• Title/Summary/Keyword: polypropylene clay nanocomposite

Search Result 10, Processing Time 0.024 seconds

Studies on Composite Filaments from Nanoclay Reinforced Polypropylene

  • Joshi, Mangala;Shaw, M.;Butola, B.S.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • The development of high tenacity, high modulus monofilaments from Polypropylene/Clay nanocomposite has been investigated. Pure sodium montmorillonite nanoclay was modified using hexadecyl trimethyl ammonium bromide (HTAB) via an ion exchange reaction. Pure and modified clay were characterized through X-ray diffraction, FTIR and TGA. The modified clay was melt blended with polypropylene (PP) in presence of a swelling agent. Composite filaments from PP/Clay nanocomposite were prepared at different weight percentages of nanoclay and the spinning and drawing conditions were optimized. The filaments were characterized for their mechanical, morphological and thermal properties. The composite PP filaments with modified clay showed improved tensile strength, modulus and reduced elongation at break. The composite filaments with unmodified clay did not show any improvement in tensile strength but the modulus improved. The sharp and narrow X-ray diffraction peaks of PP/nanoclay composite filaments indicate increase in crystallinity in presence of modified clay at small loadings (0.5 %). The improved thermal stability was observed in filaments with modified as well as unmodified clays.

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

Optimization of Processing Conditions and Mechanical Properties in Polymer Nanocomposite (고분자 나노복합재료의 가공조건 및 물성 최적화)

  • Nam, Byeong-Uk;Hong, Chae-Hwan;Hwang, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2007
  • Nanocomposites are used as a new class of polymer system and many researchers have been interested in the clay nanocomposite because of its good mechanical properties, heat resistance, flame retardancy, and barrier property. Modified layered silicates as fillers are dispersed at a nanometer-level within a polymer matrix and then new extraordinary properties are observed. In this study, polypropylene/clay nanocomposites were prepared in a twin screw extruder by the melt compounding method. In order to increase the compatibility of PP with the clay, the MAPP was used as a compatibilizer. And organic modified clays were used as a nanometric filler during the melt extrusion. Through the analysis of SAXS, WAXS, the dispersion of clay was investigated. These nanocomposites compared with a neat polypropylene/talc composite have high modulus, low toughness, and reduced shrinkage at the stable dispersion.

Effect of two compatibilizers haying comonomer in polypropylene/clay nanocomposites (Comonomer 도입한 상용화제가 Polypropylene/clay 나노복합재료에 미치는 영향)

  • Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.367-371
    • /
    • 2007
  • Nanocomposites prepared by PP(Polypropylene) based compatibilizers modified with GMA(Glycidyl methacrylate) and HEMA(Hydroxyethyl methacrylate) were used to investigate the clay dispersion and mechanical properties of them. XRD patterns showed the improvement of dispersion through clay intercalation according to the compatibilizers and comonomer. GMA modified polypropylene gave the best mechanical properties of the nanocomposite with respect to the balance of Flexural modulus (FM) and Notched izod impact strength(IS). Compatibilizers with comonoer commonly have higher grafting yield and lower melt flow rate than those of comonomer free. And they enhanced the clay dispersion and mechanical properties of nanocomposites. Optimum ratio of monomer to comonomer for nanocomposites having better mechanical properties is about 1 to 1 ratio.

  • PDF

POLYPROPYLENE/CLAY NANOCOMPOSITES FOR AUTOMOTIVE APPLICATIONS

  • HONG C. H.;LEE Y. B.;JHO J. Y.;NAM B. U.;HWANG T. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.665-670
    • /
    • 2005
  • Nanocomposites of polypropylene with organically modified clays were compounded on a twin-screw extruder by two-step melt compounding of three components, i.e., polypropylene, maleic anhydride grafted polypropylene (PP-g-MA), and organically modified clay. The effect of PP-g-MA compatibilizers, including PH-200, Epolene-43, Polybond-3002, Polybond-3200, with a wide range of maleic anhydride (MA) content and molecular weight was examined. Morphologies of nanocomposites and their mechanical properties such as stiffness, strength, and impact resistance were investigated. X-ray diffraction patterns showed that the dispersion morphology of clay particles seemed to be determined in the first compounding step and the further dispersion of clays didn't occur in the second compounding step. As the ratio of PP-g-MA to clay increased, the clay particles were dispersed more uniformly in the matrix resin. As the dispersibility of clays was enhanced, the reinforcement effect of the clays increased, however impact resistance decreased.

Combustion Properties of Ethylene-propylene diene monomer/polypropylene/Clay Nanocomposites Based on EDPM/PP (EPDM/PP에 바탕을 둔 에칠렌-프로필렌 디엔 모노머/폴리프로필렌/클레이 나노복합체의 연소특성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.410-417
    • /
    • 2011
  • Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EDPM/PP were investigated. The EDPM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the specific mass loss rate (SMLR) in the nanocomposites decreased due to the fire resistance compared with unfilled EDPM/PP, while the nanocomposites showed the higher total heat release (THR), higher CO production release, and higher specific extinction area (SEA) than those of virgin EPDM/PP. The stearic acid for softening ruber increased the THR and amount of smoke by itself, combustible.

Intercalation Behavior of Clay in Polypropylene/Montmorillonite/Wood Nanocomposites (폴리프로필렌/몬모릴로나이트/목분 나노복합체에서의 클레이 박리거동)

  • Kim, Jin Sung;Lee, Sun Young;Yoon, Ho Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • Polypropylene / montmorillonite / wood flour nanocomposites are melt-mixed by using a twin screw extruder. The montmorillonite is intercalated by the wood flour and the basal spacing of montmorillonite is increased with increasing the content of wood flour. The exfoliation constantly occurs by adding more than 10 wt.% of maleic anhydride-grafted polypropylene as the compatibilizer, which is used for improving the interfacial adhesion between matrix and filler. Also, the maleic anhydride-grafted polypropylene enhances the mechanical properties of the nanocomposites.

  • PDF

Ultrasonic degradation of polypropylene and its application for the development of PP based copolymer and nanocomposite

  • Ryu, Joung-Gul;Lee, Pil-Soo;Kim, Hyungsu;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.61-65
    • /
    • 2001
  • Thermoplastic nanocomposites based on the copolymers of polypropylene (PP)-polystyrene (PS) and organically modified montmorillonite (org-MMT) were produced by using power ultrasonic wave in an intensive mixer. Owing to the unique action of the ultrasonic wave, free radicals of styrene monomers and macroradicals of PP were generated, by which copolymers of PP and PS were formed. Another important aspect of using ultrasonic wave during the mixing process was to enhance nano-scale dispersion of org-MMT by destructing the agglomerates of org-MMT in the polymer matrix. Optimum conditions for the in-situ copolymerization and melt intercalation were studied with various concentrations of styrene monomer, sonication time and different kinds of clay. It was found that a novel attempt carried out in this study yielded further improvement in the mechanical performance of the nanocomposites compared to those produced by the conventional melt mixing process.

  • PDF

Hybrid Nanostructure-dependent Mechanical Properties and Crystallization Behaviors of Polypropylene/Clay Nanocomposites (폴리프로필렌/점토 나노복합체의 하이브리드 나노구조에 따른 기계적 성질 및 결정화거동 변화)

  • Choi, Ki-Woon;Lee, Han-Sup;Kang, Bok-Choon;Yang, Hoi-Chang
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.294-299
    • /
    • 2010
  • Clay-loaded polypropylene (PP) nanocomposites were fabricated via melt-compounding of two molecular weight ($M_w$) PPs (140 and 410 kg/mol) and octadecylammine-treated clay (C18MMT), with the assistance of maleic anhydride-grafted PP(PP-MAH), respectively, at $170^{\circ}C$ and $190^{\circ}C$. At both melt-compounding temperatures, the low-$M_w$ PP tends to easily diffuse into silicate layers, especially in the presence of the mobile PP-MAH, resulting in a marked increase in silicate layer spacing (above 58 $\AA$), when compared to 27 $\AA$ in the high-$M_w$ PP-based system. Due to relatively lower melt-viscosity of the low-$M_w$ PP-based system, however, there existed quasi-stacked clay aggregates with a thickness of 60~80 nm, while the high-$M_w$ PP-based nanocomposites showed relatively homogeneous dispersion of clays. The different morphologies are mainly related to changes in the viscoelastic properties of PPs, dependent on the processing temperature and their $M_{w}s$. The slight differences in nanocomposites induce discernible crystallization and mechanical behaviors. High-$M_w$ PP-based nanocomposites containing 1~3 wt% C18MMT showed improvement in both tensile strength and modulus, while maintaining the inherent ductility of pure PP.