• Title/Summary/Keyword: polynomial regression analysis

Search Result 172, Processing Time 0.024 seconds

Protein Requirements of the Korean Rockfish Sebastes schlegeli (조피볼락 Sebastes schlegeli의 단백질 요구량)

  • LEE Jong Yun;KANG Yong Jin;LEE Sang-Min;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.6 no.1
    • /
    • pp.13-27
    • /
    • 1993
  • In order to determine the protein requirements of the Korean rockfish Sebastes schlegeli six isocaloric diets containing crude protein level from 20\%\;to\;60\%$ were fed to two groups of fish, small and large size, with the initial average body weight of 8 g and 220 g respectively. White fish meal was used as a sole protein source. Daily weight gain, daily protein retention. daily energy retention, feed efficiency, protein retention efficiency and energy retention efficiency were significantly affected by the dietary protein content (p< 0.05). The growth parameters (that is, daily weight gain, daily protein retention and daily energy retention) increased up to $44\%$ protein level with no additional response above this point. The protein requirements were determined from daily weight gain using two different mathematical models. Second order polynomial regression analysis showed that maximum daily weight gain occurred at $56.7\%\;and\;50.6\%$ protein levels for the small size group and the large size group, respectively. However the protein requirements, determined by the broken line model, appeared to be about $40\%$ for both groups. Nutrient utilization also suggested that the protein requirements of both groups were close to $40\%$. When daily protein intake was considered, daily protein requirements per 100g of fish, estimated by the broken line model, were 0.99g and 0.35g for the small and large size groups respectively. Based on these results, a $40\%$ dietary crude protein level could be recommended for the optimum growth and efficient nutrient utilization of the Korean rockfish weighing between 8g and 300g.

  • PDF

Application of Predictive Microbiology for Microbiological Shelf Life Estimation of Fresh-cut Salad with Short-term Temperature Abuse (PMP 모델을 활용한 시판 Salad의 Short-term Temperature Abuse 시 미생물학적 유통기한 예측에의 적용성 검토)

  • Lim, Jeong-Ho;Park, Kee-Jea;Jeong, Jin-Woong;Kim, Hyun-Soo;Hwang, Tae-Young
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.633-638
    • /
    • 2012
  • The aim of this study was to investigate the growth of aerobic bacteria in fresh-cut salad during short-term temperature abuse ($4{\sim}30^{\circ}C$temperature for 1, 2, and 3 h) for 72 h and to develop predictive models for the growth of total viable cells (TVC) based on Predictive food microbiology (PFM). The tool that was used, Pathogen Modeling program (PMP 7.0), predicts the growth of Aeromonas hydrophila (broth Culture, aerobic) at pH 5.6, NaCl 2.5%, and sodium nitrite 150 ppm for 72 h. Linear models through linear regression analysis; DMFit program were created based on the results obtained at 5, 10, 20, and $30^{\circ}C$ for 72 h ($r^2$ >0.9). Secondary models for the growth rate and lag time, as a function of storage temperature, were developed using the polynomial model. The initial contamination level of fresh-cut salad was 5.6 log CFU/mL of TVC during 72 h storage, and the growth rate of TVC was shown to be 0.020~1.083 CFU/mL/h ($r^2$ >0.9). Also, the growth tendency of TVC was similar to that of PMP (grow rate: 0.017~0.235 CFU/mL/h; $r^2=0.994{\sim}1.000$). The predicted shelf life with PMP was 24.1~626.5 h, and the estimated shelf life of the fresh-cut salads with short-term temperature abuse was 15.6~31.1 h. The predicted shelf life was more than two times the observed one. This result indicates a 'fail safe' model. It can be taken to a ludicrous extreme by adopting a model that always predicts that a pathogenic microorganism will grow even under conditions so strict as to be actually impossible.