• Title/Summary/Keyword: polynomial order

Search Result 879, Processing Time 0.036 seconds

Estimation of Supply and Demand for Cardiologists in Korea

  • Mira Kim;Kyunghee Chae;Ju Mee Wang;Arum Choi;Jang-Whan Bae;Keon-Woong Moon;Sukil Kim
    • Korean Circulation Journal
    • /
    • v.54 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Background and Objectives: The objective of this study was to estimate the supply and demand for cardiologists in Korea and provide evidence for healthcare policy to ensure a stable and adequate workforce for optimal cardiovascular disease management. Methods: Past trends of inflow and outflow of cardiologists were used to make crude projections, which were then adjusted based on demands of services to obtain final projections. Inflow of cardiologists was estimated using second-order polynomial regression and demand for cardiology care was estimated using linear regression. Results: There were 1,139 active cardiologists who were under the age of 65 in clinical practice in Korea. The estimated number of cardiologists from 2022 to 2040 showed that the number of cardiologists would peak at 1,344 in 2032 and gradually decrease thereafter. We also estimated an increase of 947,811 cases of heart-related procedures annually from 2023 to 2032. The number of heart-related procedures per cardiologist would increase 1.4 times from 12,964 in 2023 to 17,862 in 2032. The estimated number of emergency patients per cardiologist under 50 years old would almost double from 544 in 2022 to 987 in 2032. Conclusions: We expect significant shortage of cardiologists in Korea within the next 10 years. The number of emergency patients per cardiologist will increase by nearly 50%, leading to high individual workload for cardiologists. To prevent this imbalance between supply and demand, an organized and collective approach by the specialty of cardiology is imperative to produce a balanced workforce.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Analytical Study on Distribution of Stresses Induced in Soil Beam (지반보의 응력분포에 관한 해석적 연구)

  • Lee, Seung-Hyun;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5009-5014
    • /
    • 2015
  • Hydraulic uplift which is caused by the action of pore water pressure can be occurred in clay underlain by granular soil during conducting narrow excavation. Estimation of hydraulic uplift is done by considering soil beam. In order to execute more precise estimation of hydraulic uplift, determination of stress distribution in soil beam is necessary. This study presents stress distribution and displacement distribution in the soil beam based on the theory of elasticity. Stress distribution developed in the soil beam by self weight was derived using stress function depicted by $5^{th}$ order of polynomial and it was seen that vertical stresses along the depth of the soil beam show parabolic distribution and those directions be downward. Regarding soil beam which has the weight of $16kN/m^3, thickness and depth are 1m respectively, maximum vertical stress was about 1.7kPa. Stress distribution by the aciton of pore water pressure was derived via superposition of the stresses corresponding to the self weight and it can be seen that vertical compressive stresses act along the depth of the soil beam when the magnitude of pore water pressure equal to 5 times of the self weight is considered. Equations for prediction of the displacements in the soil beam are also presented.

Development and Application of TDR Penetrometer for Evaluation of Soil Water Content of Subsoil (지반의 함수비 평가를 위한 관입형 TDR 프로브의 개발 및 적용)

  • Hong, Won-Taek;Jung, Young-Seok;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • Dielectric constant depends on the variation of soil water content, and the estimation of soil water content using time domain reflectometry (TDR) has been studied by many researchers. The purpose of this study is the development and application of TDR penetrometer (TDRP) in order to evaluate the soil water content according to the penetration depth. The TDRP consists of cone, sleeve, driving rod, hammer, and guide. Three electrodes, which are used to measure the dielectric constant of soils, are mounted on the surface of sleeve and, in turn, connected with coaxial cable and time domain reflectometer. To establish the relationship between the volumetric water content and dielectric constant, several laboratory tests by using the TDRP are performed in the specimens with a variety of volumetric water content. The experimental results show that the dielectric constant is strongly correlated to volumetric water content as polynomial equations with an order of 3. In addition, the volumetric water content calculated from the dielectric constant is similar to that obtained from the sample weight. In the field, a small sampler is used to compare the volumetric water content calculated from the dielectric constant with the volumetric water content obtained from the sample. The results of field application demonstrate that the volumetric water content estimated by the TDRP shows similar trend to the gravimetric water content of sample. This study suggests that the TDRP is effectively used to evaluate the volumetric water content of unsaturated soils according to the penetration depth.

Models Describing Growth Characteristics of Holstein Dairy Cows Raised in Korea

  • Vijayakumar, Mayakrishnan;Choy, Yun-Ho;Kim, Tae-Il;Lim, Dong-Hyun;Park, Seong-Min;Alam, Mahboob;Choi, Hee-Chul;Ki, Kwang-Seok;Lee, Hyun-Jeong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.167-176
    • /
    • 2020
  • The objective of the present study was to determine the best model to describe and quantify the changes in live body weight, height at withers, height at rump, body length and chest girth of Holstein cows raised under Korean feeding conditions for 50 months. The five standard growth models namely polynomial linear regression models, regression of growth variables on the first and second-order of ages in days (model 1) and regression of growth variables on age covariates from first to the third-order (model 2) as well as non-linear models were fitted and evaluated for representing growth pattern of Holstein cows raised in Korean feeding circumstances. Nonlinear models fitted were three exponential growth curve models; Brody, Gompertz, and von Bertalanffy functional models. For this purpose, a total of 22 Holstein cows raised in Korea used in the period from April 2016 to May 2020. Each model fitted to monthly growth curve records of dairy cows by using PROC NLIN procedure in SAS program. On the basis of the results, nonlinear models showed the lower root mean square of error (RMSE) for live body weight, height at withers, height at rump, body length and chest girth (12.22, 1.95, 1.55, 4.04, 2.06) with higher correlation coefficiency (R2) values for live body weight, height at withers, height at rump, body length and chest girth (0.99, 0.99, 0.99, 1.00, 1.00). Overall, the evaluation of the different growth models indicated that the Gompertz model used in the study seemed to be the most appropriate one for standard growth of Holstein cows raised under Korean feeding system.

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

The Relationship Between Smoke-Yields and Tipping Materials of the Cigarette (담배 연기발생과 Tipping 재료와의 상관성 연구)

  • Kim, Young-Hoh;Lee, Young-Taek;Kim, Sung-Han;Kim, Chung-Ryul;Kim, Jong-Yeol;Shin, Chang-Ho;Lee, Keun-Hoi
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.131-138
    • /
    • 1998
  • In order to minimize the trial frequency in the new filter cigarette design, we studied the relationship between smoke yield and tipping materials of cigarette. A three levels full factorial design involving filament denier (X1,2.5-3.3d), Porosity of the acetate filter plug wrap (X2, 3,500-16,000CU) and porosity of the tip paper (X3, 400-1,200CU) was used. Three independent factors (Xl, X2, X3) were chosen for their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation, Y : $\beta$o + $\beta$1Xl + $\beta$2X2 + $\beta$3X3 + $\beta$11Xl2 + $\beta$22X22+ $\beta$33X32 + $\beta$12X1X2 + $\beta$13XIX3 $\beta$23X2X3 which measures the linear, quadratic, and interaction effects. Twenty-nine trial numbers were obtained as a results of using a three levels full factorial design and it was analyzed by the multiple regression analysis with backward stepwise in STATISTICA/pc under restricted conditions. Tar yields of the cigarette was affected by porosity of tip paper (0.66), filament denier (0.47) and porosity of plug wrap (0.28) in the decreasing order, and linear effect of tip paper porosity (B3) and filament denier (91) were significant at a level of 0.01($\alpha$). The filament denier and tipping paper porosity interaction F ratio among three factors had a P-value of 0,000041, indicating higher interaction between these factors. Based on the analysis of variance, the model fitted for Tar (Y1) was significant at 5% confidence level and the coefficient of determination (0.96) was the proportion of variability in the data fitted for by the model.

  • PDF

A Study on Pseudo-Range Correction Modeling in order to Improve DGNSS Accuracy (DGNSS 위치정확도 향상을 위한 PRC 보정정보 모델링에 관한 연구)

  • Sohn, Dong Hyo;Park, Kwan Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • We studied on pseudo-range correction(PRC) modeling in order to improve differential GNSS(DGNSS) accuracy. The PRC is the range correction information that provides improved location accuracy using DGNSS technique. The digital correction signal is typically broadcast over ground-based transmitters. Sometimes the degradation of the positioning accuracy caused by the loss of PRC signals, radio interference, etc. To prevent the degradation, in this paper, we have designed a PRC model through polynomial curve fitting and evaluated this model. We compared two quantities, estimations of PRC using model parameters and observations from the reference station. In the case of GPS, the average is 0.1m and RMSE is 1.3m. Most of GPS satellites have a bias error of less than ${\pm}1.0m$ and a RMSE within 3.0m. In the case of GLONASS, the average and the RMSE are 0.2m and 2.6m, respectively. Most of satellites have less than ${\pm}2.0m$ for a bias error and less than 3.0m for RMSE. These results show that the estimated value calculated by the model can be used effectively to maintain the accuracy of the user's location. However;it is needed for further work relating to the big difference between the two values at low elevation.

Design of Multi-FPNN Model Using Clustering and Genetic Algorithms and Its Application to Nonlinear Process Systems (HCM 클러스처링과 유전자 알고리즘을 이용한 다중 FPNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;안태천
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.343-350
    • /
    • 2000
  • In this paper, we propose the Multi-FPNN(Fuzzy Polynomial Neural Networks) model based on FNN and PNN(Polyomial Neural Networks) for optimal system identifacation. Here FNN structure is designed using fuzzy input space divided by each separated input variable, and urilized both in order to get better output performace. Each node of PNN structure based on GMDH(Group Method of Data handing) method uses two types of high-order polynomials such as linearane and quadratic, and the input of that node uses three kinds of multi-variable inputs such as linear and quadratic, and the input of that node and Genetic Algorithms(GAs) to identify both the structure and the prepocessing of parameters of a Multi-FPNN model. Here, HCM clustering method, which is carried out for data preproessing of process system, is utilized to determine the structure method, which is carried out for data preprocessing of process system, is utilized to determance index with a weighting factor is used to according to the divisions of input-output space. A aggregate performance inddex with a wegihting factor is used to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of this aggregate abjective function which it is acailable and effective to design to design and optimal Multi-FPNN model. The study is illustrated with the aid of two representative numerical examples and the aggregate performance index related to the approximation and generalization abilities of the model is evaluated and discussed.

  • PDF

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.