• 제목/요약/키워드: polynomial networks

검색결과 235건 처리시간 0.021초

Robust Key Agreement From Received Signal Strength in Stationary Wireless Networks

  • Zhang, Aiqing;Ye, Xinrong;Chen, Jianxin;Zhou, Liang;Lin, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2375-2393
    • /
    • 2016
  • Key agreement is paramount in secure wireless communications. A promising approach to address key agreement schemes is to extract secure keys from channel characteristics. However, because channels lack randomness, it is difficult for wireless networks with stationary communicating terminals to generate robust keys. In this paper, we propose a Robust Secure Key Agreement (RSKA) scheme from Received Signal Strength (RSS) in stationary wireless networks. In order to mitigate the asymmetry in RSS measurements for communicating parties, the sender and receiver normalize RSS measurements and quantize them into q-bit sequences. They then reshape bit sequences into new l-bit sequences. These bit sequences work as key sources. Rather than extracting the key from the key sources directly, the sender randomly generates a bit sequence as a key and hides it in a promise. This is created from a polynomial constructed on the sender's key source and key. The receiver recovers the key by reconstructing a polynomial from its key source and the promise. Our analysis shows that the shared key generated by our proposed RSKA scheme has features of high randomness and a high bit rate compared to traditional RSS-based key agreement schemes.

PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계 (Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks)

  • 오성권;유성훈
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구 (A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks)

  • 오성권;김현기;김정태
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.

컴퓨터 통신 네트워크의 보안성을 위한 공개키 배낭 암호시스템에 대한 연구 (A Study on Public Key Knapsack Cryptosystem for Security in Computer Communication Networks)

  • 양태규
    • 정보학연구
    • /
    • 제5권4호
    • /
    • pp.129-137
    • /
    • 2002
  • 본 논문에서는 컴퓨터 통신 네트워크의 데이터 안전을 위해서 다항식을 인수분해 하는 데 어려움이 있는 공개키 다항식 배낭 암호시스템 알고리즘을 제안하였다. 제안된 공개키 다항식 배낭 암호시스템은 먼저, 초증가 벡터 P를 변환하여 다항식 벡터 Q(x,y,z)를 형성하고, 다항식 g(x,y,z)를 선택한다. 이러한 두개의 다항식 Q(x,y,z)와 g(x,y,z)를 공개키로 한다. 공개키 다항식 Q(x,y,z), g(x,y,z)와 난수 $\alpha$를 사용하여 평문을 암호화하여 암호문 R(x,y,z)을 수신자에게 보낸다. 수신자는 암호문 R(x,y,z)을 g(x,y,z)=0의 근, x, y와 z 그리고 비밀키 벡터의 초증가성을 사용하여 평문을 구하게 된다. 따라서 해독과정에서 3변수 다항식 g(x,y,z)=0의 인수분해의 어려움 때문에 안전성을 갖는 공개키 다항식 배낭 암호시스템으로 된다. 제안된 공개키 다항식 배낭 암호시스템의 타당성을 컴퓨터 시뮬레이션을 통하여 입증하였다.

  • PDF

Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks based on Information Granulation and Evolutionary Algorithm

  • 박호성;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.297-300
    • /
    • 2005
  • In this study, we proposed genetically optimized self-organizing fuzzy polynomial neural network based on information granulation and evolutionary algorithm (gdSOFPNN), develop a comprehensive design methodology involving mechanisms of genetic optimization. The proposed gdSOFPNN gives rise to a structural Iy and parametrically optimized network through an optimal parameters design available within FPN (viz. the number of input variables, the order of the polynomial, input variables, the number of membership functions, and the apexes of membership function). Here, with the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The performance of the proposed gdSOFPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling.

  • PDF

정보 입자 기반 유전론적 퍼지 집합 다항식 뉴럴네트워크 설계와 다변수 시스템으로의 응용 (The Design of Genetic Fuzzy Set Polynomial Neural networks based on Information Granules and Its Application of Multi -variables System)

  • 이인태;오성권;김현기;서기성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.479-482
    • /
    • 2005
  • 본 논문에서는 퍼지 뉴럴네트워크의 새로운 구조인 Fuzzy Set-based Polynomial Neural Networks(FSPNN)을 소개한다. 제안된 모델은 일반적인 최적화 방법과 정보 입자를 이용하여 네트워크를 설계한다. 최종 구조는 Fuzzy Set-based Polynomial Neuron(FSPN)을 기반으로 설계한 FPNN과 동일하다. 첫째로 FSPNS의 종합적인 설계방법(유전자 알고리즘을 이용한 최적 구조 탐색)에 대해 소개한다. FSPNN에 관계되는 입력변수의 개수, 후반부 다항식의 차수, 멤버쉽 함수의 수 그리고 입력변수 개수에 따른 입력변수를 유전자 알고리즘을 통하여 동조한다. 두 번째로, 입력 변수의 개별적인 퍼지 규칙 형성과 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 HCM 클러스터링을 통한 Information Granules로 정의한다. 또한 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다. 이 네트워크의 성능은 기존에 퍼지 또는 뉴로퍼지 모델링에서 실험된 모델링 표준치를 이용하여 평가한다.

  • PDF

공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석 (K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies)

  • 김욱동;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

GA 기반 자기구성 다항식 뉴럴 네트워크의 최적화를 위한 새로운 설계 방법 (A New Design Approach for Optimization of GA-based SOPNN)

  • 박호성;박병준;박건준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2627-2629
    • /
    • 2003
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Self-Organizing Polynomial Neural Networks(SOPNN). The conventional SOPNN is based on the extended Group Method of Data Handling(GMDH) method and utilized the polynomial order (viz. linear, quadratic, and modified quadratic) as well as the number of node inputs fixed (selected in advance by designer) at Polynomial Neurons (or nodes) located in each layer through a growth process of the network. Moreover it does not guarantee that the SOPNN generated through learning has the optimal network architecture. But the proposed GA-based SOPNN enable the architecture to be a structurally more optimized networks, and to be much more flexible and preferable neural network than the conventional SOPNN. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented with using nonlinear system data.

  • PDF

자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계 (Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture)

  • 박호성;박건준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF