• Title/Summary/Keyword: polynomial compound curves

Search Result 2, Processing Time 0.017 seconds

A NOTE ON GENERALIZED PARAMETRIC MARCINKIEWICZ INTEGRALS

  • Liu, Feng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1099-1115
    • /
    • 2019
  • In the present paper, we establish certain $L^p$ bounds for the generalized parametric Marcinkiewicz integral operators associated to surfaces generated by polynomial compound mappings with rough kernels in Grafakos-Stefanov class ${\mathcal{F}}_{\beta}(S^{n-1})$. Our main results improve and generalize a result given by Al-Qassem, Cheng and Pan in 2012. As applications, the corresponding results for the generalized parametric Marcinkiewicz integral operators related to the Littlewood-Paley $g^*_{\lambda}$-functions and area integrals are also presented.

Compound effects of operating parameters on burnup credit criticality analysis in boiling water reactor spent fuel assemblies

  • Wu, Shang-Chien;Chao, Der-Sheng;Liang, Jenq-Horng
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • This study proposes a new method of analyzing the burnup credit in boiling water reactor spent fuel assemblies against various operating parameters. The operating parameters under investigation include fuel temperature, axial burnup profile, axial moderator density profile, and control blade usage. In particular, the effects of variations in one and two operating parameters on the curve of effective multiplication factor ($k_{eff}$) versus burnup (B) are, respectively, the so-called single and compound effects. All the calculations were performed using SCALE 6.1 together with the Evaluated Nuclear Data Files, part B (ENDF/B)-VII238-neutron energy group data library. Furthermore, two geometrical models were established based on the General Electric (GE)14 $10{\times}10$ boiling water reactor fuel assembly and the Generic Burnup-Credit (GBC)-68 storage cask. The results revealed that the curves of $k_{eff}$ versus B, due to single and compound effects, can be approximated using a first degree polynomial of B. However, the reactivity deviation (or changes of $k_{eff}$, ${\Delta}k$) in some compound effects was not a summation of the all ${\Delta}k$ resulting from the two associated single effects. This phenomenon is undesirable because it may to some extent affect the precise assessment of burnup credit. In this study, a general formula was thus proposed to express the curves of $k_{eff}$ versus B for both single and compound effects.