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Abstract. In the present paper, we establish certain Lp bounds for the

generalized parametric Marcinkiewicz integral operators associated to
surfaces generated by polynomial compound mappings with rough ker-

nels in Grafakos-Stefanov class Fβ(Sn−1). Our main results improve

and generalize a result given by Al-Qassem, Cheng and Pan in 2012.
As applications, the corresponding results for the generalized paramet-

ric Marcinkiewicz integral operators related to the Littlewood-Paley g∗λ-
functions and area integrals are also presented.

1. Introduction

During the last several years, a considerable amount of attention has been
given to study the Lp bounds for the generalized parametric Marcinkiewicz
integrals with various kinds of kernels (see for example, [1,2,6,10,14,27], among
others). In this paper, we aim to establish some new results concerning this
topic. To be precise, we will establish certain Lp bounds for the generalized
parametric Marcinkiewicz integral operators associated to surfaces generated
by polynomial compound mappings with rough kernels in Grafakos-Stefanov
class. We point out that our main results greatly improve and generalize some
known ones.

Throughout this paper, let Rn (n ≥ 2) be the n-dimensional Euclidean space
and Sn−1 denote the unit sphere in Rn equipped with the induced Lebesgue
measure dσ. For y ∈ Rn \ {0}, we set y′ = y/|y|. Let ΓP,ϕ = {P (ϕ(|y|))y′; y ∈
Rn} be the surfaces generated by a continuous function ϕ : [0,∞) → R and a
real polynomial P on R satisfying P (0) = 0. Assume that Ω ∈ L1(Sn−1) is a
homogeneous function of degree zero and satisfies

(1)

∫
Sn−1

Ω(u)dσ(u) = 0.
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For 1 < q <∞ and ρ = ς + iτ (ς, τ ∈ R with ς > 0), we define the generalized
parametric Marcinkiewicz integral operator µqΩ,P,ϕ,ρ along ΓP,ϕ by

(2) µqΩ,P,ϕ,ρf(x) =
(∫ ∞

0

∣∣∣ 1

tρ

∫
|y|≤t

f(x− P (ϕ(|y|))y′) Ω(y′)

|y|n−ρ
dy
∣∣∣q dt
t

)1/q

,

where f ∈ S(Rn), the space of Schwartz functions. For the sake of simplicity,
we denote µqΩ,P,ϕ,ρ = µqΩ,ρ if ϕ(t) = t and P (t) = t and µqΩ,P,ϕ,ρ = µqΩ,P if

ϕ(t) = t and ρ = 1. When q = 2 and ρ = 1, we write µqΩ,ρ = µΩ. The operator
µΩ is just the classical well-known Marcinkiewicz integral operator, which was
first introduced and studied by Stein [28] who observed that µΩ is of type (p, p)
(1 < p ≤ 2) if Ω ∈ Lipα(Sn−1) for 0 < α ≤ 1. In 1960, Benedek, Calderón and
Panzone [4] extended Stein’s result to the case Ω ∈ C1(Sn−1) and 1 < p < ∞.
Later on, the above results were improved greatly by many authors under much
weaker conditions on Ω. For example, see [7] for the case Ω ∈ H1(Sn−1) (the
Hardy space on Sn−1), [3] for the case Ω ∈ L(log+ L)1/2(Sn−1), [9] for the

case Ω ∈ B(0,−1/2)
r (Sn−1) (the block space generated by r-blocks), [5] for the

case Ω ∈ Fβ(Sn−1) (the Grafakos-Stefanov class). For q = 2 and ρ 6= 1, the
operator µqΩ,ρ is the classical parametric Marcinkiewicz integral operator µΩ,ρ.

The Lp bounds for µΩ,ρ with real (resp., complex) number ρ was first studied
by Hörmander [13] (resp., Sakamoto and Yabuta [27]). Readers may consult
[8, 15–20, 22–26, 30, 31] for their development and other extensions. For the
Grafakos-Stefanov class and the operator µqΩ,P , Chen, Fan and Pan [5] first

proved that µ2
Ω,P is bounded on Lp(Rn) for p ∈ (2β/(2β − 1), 2β), provided

that Ω ∈ Fβ(Sn−1) for some β > 1. Recently, Wu [30] improved and extended
the main result of [5] to the following.

Theorem A ([30]). Let P be a real polynomial on R of deg(P ) = N and satisfy
P (0) = 0. Let Ω ∈ Fβ(Sn−1) for some β > 1/2 and satisfy (1). Then

‖µ2
Ω,P f‖Lp(Rn) ≤ C‖f‖Lp(Rn)

for all p ∈ (1 + 1/(2β), 1 + 2β). The constant C > 0 is independent of the
coefficients of PN .

Recall that Fβ(Sn−1) for β > 0, which is called the Grafakos-Stefanov class,
is defined by

Fβ(Sn−1) :=
{

Ω ∈ L1(Sn−1) : sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)| logβ
2

|ξ · y′|
dσ(y′) <∞

}
,

which was introduced by Grafakos and Stefanov [12] in the study of Lp bounds
for rough singular integrals. Clearly, it was pointed out in [12] that Fβ1

(Sn−1) ⊂
Fβ2(Sn−1) for 0 < β2 < β1,

⋃
q>1 L

q(Sn−1) ⊂ Fβ(Sn−1) for β > 0, which are

proper inclusions. Moreover,
⋂
β>1 Fβ(Sn−1) is not included in L(log+L)(Sn−1).

When ρ = 1, we denote µqΩ,ρ by µqΩ. In 2002, Chen, Fan and Ying [6]

first introduced the operator µqΩ and proved that µqΩ is bounded from the
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homogeneous Triebel-Lizorkin space Ḟ 0
p,q(Rn) to Lp(Rn) for all 1 < p, q < ∞,

provided that Ω ∈ Lq(Sn−1) for some q > 1. Later on, the above result was
improved greatly by many authors under much weaker conditions on Ω. For
example, see [2, 14, 27] for the case Ω ∈ L(log+ L)(Sn−1), [2, 10] for the case

Ω ∈ L(log+ L)α(Sn−1) for some α > 0, [2] for the case Ω ∈ B(0,1/q−1)
r (Sn−1),

[1] for the case Ω ∈ Fβ(Sn−1).
The main result of [1] is introduced as follows.

Theorem B ([1]). Let Ω ∈ Fβ(Sn−1) for some β > 1 and satisfy (1). Then

‖µqΩf‖Lp(Rn) ≤ C‖f‖Ḟ 0
p,q(Rn)

for p ∈ (2β/(2β − 1), 2β) and q ∈ (2β/(2β − 1), 2β).

By the fact that Ḟ 0
p,2(Rn) = Lp(Rn) for 1 < p < ∞, Theorem A directly

implies ‖µqΩ,P f‖Lp(Rn) ≤ C‖f‖Ḟ 0
p,q(Rn) for all p ∈ (1+1/(2β), 1+2β) and q = 2

under the condition that Ω ∈ Fβ(Sn−1) for some β > 1/2. Compared with
Theorems A and B, a natural question is the following.

Question 1.1. Is the operator µqΩ,P bounded from Ḟ 0
p,q(Rn) to Lp(Rn) for

p ∈ (1 + 1/(2β), 1 + 2β) and q ∈ (1 + 1/(2β), 1 + 2β) under the condition that
Ω ∈ Fβ(Sn−1) for some β > 1/2?

This is the main motivation of this paper. Our investigation will not only
address this problem, but also deal with a more general class of operators.
More precisely, we shall establish the following result.

Theorem 1.2. Let P be a real polynomial on R of degree N and satisfy P (0) =
0 and ϕ ∈ F. Here F is the set of all functions φ satisfying the following
conditions:

(a) φ is a positive increasing C1((0,∞)) function such that tδφ′(t) is mono-
tonic on R+ for some δ ∈ R;

(b) there exist Cφ, cφ > 0 such that tφ′(t) ≥ Cφφ(t) and φ(2t) ≤ cφφ(t) for
all t > 0.

Assume that Ω ∈ Fβ(Sn−1) for some β > 1/2 and satisfies (1). Then

‖µqΩ,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖f‖Ḟ 0
p,q(Rn)

for p ∈ (1+1/(2β), 1+2β) and q ∈ (1+1/(2β), 1+2β). Here the constant Cp > 0
is independent of the coefficients of P , but may depend on p, q, n, ϕ, ρ,N .

Remark 1.3. (i) For the class F, there are some model examples such as tα (α >
0), tβ ln(1+t) (β ≥ 1), t ln ln(e+t), real-valued polynomials P on R with positive
coefficients and P (0) = 0 and so on. Note that there exists Bϕ > 1 such that
ϕ(2t) ≥ Bϕϕ(t) for any ϕ ∈ F (see [15]).

(ii) Comparing Theorem B with Theorem 1.2, the range of β is extended
to the case β > 1/2. Since Fβ1

(Sn−1) ⊂ Fβ2
(Sn−1) for 0 < β2 < β1, which

are proper inclusions. On the other hand, the range of (p, q) in Theorem 1.2
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is larger than that of Theorem B. Thus, Theorem 1.2 improves and generalizes
greatly the main result in [1], even in the special case ρ = 1, ϕ(t) ≡ t and
P (t) ≡ t.

(iii) Theorem 1.2 improves and generalizes greatly the main result in [6]
since

⋃
q>1 L

q(Sn−1) ⊂ Fβ(Sn−1) for β > 0, which are proper inclusions.

(iv) When ρ = 1, ϕ(t) ≡ t and q = 2, Theorem 1.2 implies Theorem A by

the fact that Ḟ 0
p,2(Rn) = Lp(Rn) for 1 < p <∞. Thus, Theorem 1.2 generalizes

very much the main result in [30].

(v) Due to Fβ1
(Sn−1) ⊂ Fβ2

(Sn−1) for 0 < β2 < β1 and Ḟ 0
p,2(Rn) = Lp(Rn)

for 1 < p < ∞, we see that Theorem 1.2 improves and generalizes greatly the
result in [5].

As applications of Theorem 1.2, we consider the corresponding paramet-

ric Marcinkiewicz integral operators Mλ,q,∗
Ω,P,ϕ,ρ and Mq

Ω,P,ϕ,ρ,S related to the
Littlewood-Paley g∗λ-function and the area integral S, respectively, which are
defined by

Mλ,q,∗
Ω,P,ϕ,ρf(x) :=

(∫∫
Rn+1

+

( t

t+ |x− y|

)nλ
×
∣∣∣ 1

tρ

∫
|y|≤t

Ω(y′)

|y|n−ρ
f(x− P (ϕ(|y|))y′)dy

∣∣∣q dydt
tn+1

)1/q

,

where λ > 0 and Rn+1
+ = Rn × (0,∞);

Mq
Ω,P,ϕ,ρ,Sf(x) :=

(∫∫
Γ(x)

∣∣∣ 1

tρ

∫
|y|≤t

Ω(y′)

|y|n−ρ
f(x− P (ϕ(|y|))y′)dy

∣∣∣q dydt
tn+1

)1/q

,

where Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y| < t} and Ω, P, ϕ, ρ are given as in (2).

As applications of Theorem 1.2, we obtain:

Theorem 1.4. Let P be a real polynomial on R of degree N and satisfy
PN (0) = 0 and ϕ ∈ F. Let Ω ∈ Fβ(Sn−1) for some β > 1/2 and satisfy
(1). Then for q ∈ (1 + 1/(2β), 1 + 2β) and p ∈ [q, 1 + 2β), there exists a
constant C > 0 such that

‖Mλ,q,∗
Ω,P,ϕ,ρf‖Lp(Rn) ≤ C‖f‖Ḟ 0

p,q(Rn).

Here the constant C > 0 is independent of the coefficients of P , but may depend
on p, q, n, λ, ϕ, ρ,N . The same result holds for Mq

Ω,P,ϕ,ρ,S.

The paper is organized as follows. In Section 2 we recall the definition
of the homogeneous Triebel-Lizorkin spaces and present a well-known charac-
terization of homogeneous Triebel-Lizorkin spaces. In Section 3, we establish
two vector-valued inequalities for some measures and a Littliewood-Paley type
inequality, which play key roles in the proof of Theorem 1.2. The proofs of
Theorems 1.2 and 1.4 will be given in Section 4. We would like to remark
that the main method employed in this paper is a combination of ideas and
arguments from [15], [21], [31], [32].
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Throughout the paper, for any p ∈ (1,∞] we let p′ denote the conjugate
index of p which satisfies 1/p + 1/p′ = 1 (here we set ∞′ = 1). The letter C
will stand for positive constants not necessarily the same one at each occurrence
but is independent of the essential variables.

2. Homogeneous Triebel-Lizorkin spaces

Let S ′(Rn) be the tempered distribution class on Rn. For α ∈ R and 0 <

p, q ≤ ∞ (p 6=∞), the homogeneous Triebel-Lizorkin space Ḟαp,q(Rn) is defined
by

Ḟαp,q(Rn)=
{
f ∈ S ′(Rn) : ‖f‖Ḟαp,q(Rn) =

∥∥∥(∑
i∈Z

2−iαq|Ψi∗f |q
)1/q∥∥∥

Lp(Rn)
<∞

}
,

where Ψ̂i(ξ) = φ(2iξ) for i ∈ Z and φ ∈ C∞c (Rn) satisfies the conditions:
0 ≤ φ(x) ≤ 1; supp(φ) ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2}; φ(x) ≥ c > 0 if
3/5 ≤ |x| ≤ 5/3;

∑
j∈Z φ(2jξ) = 1 for ξ 6= 0. It is well-known that S(Rn) is

dense in Ḟαp,q(Rn) and the following hold:

(1) Ḟ 0
p,2(Rn) = Lp(Rn) for 1 < p <∞;

(2) (Ḟαp,q(Rn))∗ = Ḟ−αp′,q′(Rn) for α ∈ R and 1 < p, q <∞;

(3) Ḟαp,q1(Rn) ⊂ Ḟαp,q2(Rn) for α ∈ R, 0 < p ≤ ∞ and q1 ≤ q2.

Let {ak}k∈Z be a lacunary sequence such that infk∈Z
ak+1

ak
≥ a > 1. Let

η0 ∈ C∞(R) be an even function satisfying 0 ≤ η0(t) ≤ 1, η0(0) = 1 and

η0(t) = 0 for |t| ≥ 1. Set η(ξ) = 1 for |ξ| ≤ 1, η(ξ) = η0( |ξ|−1
a−1 ), where a > 1.

Then, η satisfies χ|ξ|≤1(ξ) ≤ η(ξ) ≤ χ|ξ|≤a(ξ) and |∂αη(ξ)| ≤ cα(a− 1)−|α| for
ξ ∈ Rn and α ∈ Nn, where cα is independent of a. We define functions {ψk}k∈Z
on Rn by ψk(ξ) = η(a−1

k+1ξ)− η(a−1
k ξ). Then observe that

(i) supp(ψk) ⊂ {ak ≤ |ξ| ≤ aak+1};
(ii) supp(ψk) ∩ supp(ψj) = ∅ for |j − k| ≥ 2;
(iii)

∑
k∈Z ψk(ξ) = 1 for ξ ∈ Rn\{0}.

The following is a well-known characterization of homogeneous Triebel-
Lizorkin spaces, which is one of the main ingredients of the proof of Theorem
1.2.

Lemma 2.1 ([32]). Let Φk be defined on Rn by Φ̂k(ξ) = ψk(ξ) and An denote
the set of all polynomials on Rn. Let {ak}k∈Z be a lacunary sequence of positive
numbers with 1 < a ≤ ak+1

ak
≤ b for all k ∈ Z. For α ∈ R, 1 < p, q < ∞ and

f ∈ S(Rn)/An, we define the norm ‖f‖Ḟαp,q({Φk}k∈Z,Rn) by

‖f‖Ḟαp,q({Φk}k∈Z,Rn) =
∥∥∥(∑

k∈Z
aαqk |Φk ∗ f |

q
)1/q∥∥∥

Lp(Rn)
.

Then ‖f‖Ḟαp,q({Φk}k∈Z,Rn) is equivalent to ‖f‖Ḟαp,q(Rn) for α ∈ R and 1 < p, q <
∞.
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3. Some vector-valued inequalities

In this section we shall establish some vector-valued inequalities, which play
key roles in the proof of Theorem 1.2. Let Ω, ρ be given as in (2) and Γ : Rn →
Rd (d ≥ 1) be a suitable mapping. Define the family of measures {σΩ,Γ,k,t} on
Rd by

(3) σ̂Ω,Γ,k,t(ξ) =
1

(2kt)ρ

∫
2k−1t<|y|≤2kt

e−2πiξ·Γ(y) Ω(y′)

|y|n−ρ
dy.

The related maximal operator σ∗Ω,Γ is defined by

σ∗Ω,Γ(f)(x) = sup
k∈Z

sup
t>0

∣∣|σΩ,Γ,k,t| ∗ f(x)
∣∣,

where |σΩ,Γ,k,t| is defined in the same way as σΩ,Γ,k,t, but with Ω replaced by
|Ω|.

Lemma 3.1. Let Ω ∈ L1(Sn−1) and Γ(y) = P(ϕ(|y|)y′), where ϕ ∈ F and
P = (P1, P2, . . . , Pd) with each Pj being a real-valued polynomial on Rn. Then

‖σ∗Ω,Γ(f)‖Lp(Rd) ≤ C‖Ω‖L1(Sn−1)‖f‖Lp(Rd)

for 1 < p < ∞. The constant C > 0 is independent of Ω and the coefficients
of {Pj}dj=1, but depends on ϕ and p.

Proof. By the change of variable and Hölder’s inequality, one has∣∣|σΩ,Γ,k,t| ∗ f(x)
∣∣

≤
∫ 2kt

2k−1t

∫
Sn−1

|Ω(y′)||f(x− P(ϕ(r)y′))|dσ(y′)
dr

r

≤ ‖Ω‖1/γL1(Sn−1)

×
(∫

Sn−1

|Ω(y′)|
∫ 2kt

2k−1t

|f(x− P(ϕ(r)y′))|γ
′ dr

r
dσ(y′)

)1/γ′

,

which yields

σ∗Ω,Γ(f)(x) ≤ ‖Ω‖1/γL1(Sn−1)

×
(∫

Sn−1

|Ω(y′)|
(

sup
t>0

∫ t

t/2

|f(x− P(ϕ(r)y′))|γ
′ dr

r

)
dσ(y′)

)1/γ′

.(4)

Using a change of variable and the properties of ϕ, one can obtain∫ t

t/2

|f(x− P(ϕ(r)y′))|γ
′ dr

r

=

∫ ϕ(t)

ϕ(t/2)

|f(x− P(ry′))|γ
′ dr

ϕ−1(r)ϕ′(ϕ−1(r))

≤ 1

Cϕ

∫ ϕ(t)

ϕ(t/2)

|f(x− P(ry′))|γ
′ dr

r
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≤ cϕ
Cϕ

1

ϕ(t)

∫ ϕ(t)

0

|f(x− P(ry′))|γ
′
dr.

It follows that

(5) sup
t>0

∫ t

t/2

|f(x− P(ϕ(r)y′))|γ
′ dr

r
≤ C(ϕ) sup

t>0

1

t

∫ t

0

|f(x− P(ry′))|γ
′
dr.

By pp. 476–478 in [29], we obtain that there exists C > 0 independent of the
coefficients of {Pj}dj=1 such that

(6)
∥∥∥ sup
t>0

1

t

∫ t

0

|f(x− P(ry′))|dr
∥∥∥
Lp(Rd)

≤ Cp‖f‖Lp(Rd)

for 1 < p ≤ ∞. We get from (5) and (6) that∥∥∥ sup
t>0

∫ t

t/2

|f(x− P(ϕ(r)y′))|γ
′ dr

r

∥∥∥
Lp(Rd)

≤ C(ϕ, p)‖f‖Lp(Rd)

for 1 < p ≤ ∞. The constant C(ϕ, p) > 0 is independent of the coefficients of
{Pj}dj=1. This together with (4) and Minkowski’s inequality implies that

‖σ∗h,Ω,Γ(f)‖Lp(Rd) ≤ C(ϕ, p)‖Ω‖L1(Sn−1)‖f‖Lp(Rd)

for 1 < p < ∞. The constant C(ϕ, p) > 0 is independent of Ω and the
coefficients of {Pj}dj=1. This proves Lemma 3.1. �

Applying Lemma 3.1, we have:

Lemma 3.2. Let Ω ∈ L1(Sn−1) and Γ(y) = P(ϕ(|y|)y′), where ϕ ∈ F and
P = (P1, P2, . . . , Pd) with each Pj being a real-valued polynomial on Rn. Then
(7)∥∥∥(∑

k∈Z

∫ 2

1

|σΩ,Γ,k,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rd)
≤ C1‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

;

(8)
∥∥∥(∑

k∈Z
|σΩ,Γ,k,t ∗ gk|q

)1/q∥∥∥
Lp(Rd)

≤ C2‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

hold for 1 < p, q < ∞ and any t ∈ [1, 2]. The above constants C1, C2 > 0
are independent of Ω and the coefficients of {Pj}dj=1. Moreover, C2 is also
independent of t.

Proof. We first prove (7). Let 1 < p <∞. By duality, there exists a nonnega-

tive function f ∈ Lp′(Rd) with ‖f‖Lp′ (Rd) = 1 such that∥∥∥∑
k∈Z

∫ 2

1

|σΩ,Γ,k,t ∗ gk|dt
∥∥∥
Lp(Rd)

=

∫
Rd

∑
k∈Z

∫ 2

1

|σΩ,Γ,k,t ∗ gk(x)|dtf(x)dx

≤
∫
Rd

∑
k∈Z
|gk(x)|σ∗Ω,Γ(f̃)(−x)dx.(9)
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Applying Lemma 3.1 and Hölder’s inequality, (9) leads to

(10)
∥∥∥∑
k∈Z

∫ 2

1

|σΩ,Γ,k,t ∗ gk|dt
∥∥∥
Lp(Rd)

≤ C‖Ω‖L1(Sn−1)

∥∥∥∑
k∈Z
|gk|
∥∥∥
Lp(Rd)

.

On the other hand, we get by Lemma 3.1 that

(11)

∥∥∥ sup
k∈Z

sup
t∈[1,2]

|σΩ,Γ,k,t ∗ gk|
∥∥∥
Lp(Rd)

≤
∥∥∥σ∗Ω,Γ( sup

k∈Z
|gk|
)∥∥∥

Lp(Rd)

≤ C‖Ω‖L1(Sn−1)

∥∥∥ sup
k∈Z
|gk|
∥∥∥
Lp(Rd)

.

Interpolation between (10) and (11) implies∥∥∥(∑
k∈Z

∫ 2

1

|σΩ,Γ,k,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rd)
≤ C‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

for 1 < p, q <∞. This proves (7).
It remains to prove (8). Fix t ∈ [1, 2]. Let 1 < p < ∞. By duality, there

exists a nonnegative function h ∈ Lp′(Rd) with ‖h‖Lp′ (Rd) = 1 such that∥∥∥∑
k∈Z
|σΩ,Γ,k,t ∗ gk|

∥∥∥
Lp(Rd)

=

∫
Rd

∑
k∈Z
|σΩ,Γ,k,t ∗ gk(x)|h(x)dx

≤
∫
Rd

∑
k∈Z
|gk(x)|σ∗Ω,Γ(h̃)(−x)dx.(12)

Invoking Lemma 3.1, Hölder’s inequality and (12), we obtain

(13)
∥∥∥∑
k∈Z
|σΩ,Γ,k,t ∗ gk|

∥∥∥
Lp(Rd)

≤ C‖Ω‖L1(Sn−1)

∥∥∥∑
k∈Z
|gk|
∥∥∥
Lp(Rd)

.

On the other hand, by the argument similar to those used in deriving (11),

(14)
∥∥∥ sup
k∈Z
|σΩ,Γ,k,t ∗ gk|

∥∥∥
Lp(Rd)

≤ C‖Ω‖L1(Sn−1)

∥∥∥ sup
k∈Z
|gk|
∥∥∥
Lp(Rd)

for 1 < p < ∞. Then (8) follows from the interpolation between (13) and
(14). �

Lemma 3.3. For each k ∈ Z, define the multiplier operator Sk in Rn by
Skf(x) = Φk ∗ f(x). Here Φk is defined as in Lemma 2.1. Let 1 < q <∞.

(i) For 1 < p < q and 1 < r < p, it holds that

(15)

∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤ C
(∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

|gt,j,k|qdt
)1/q∥∥∥r

Lp(Rn)

)1/r

.
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(ii) For q < p < 2 and 1 < r < p′, it holds that

(16)

∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤ C
(∑
j∈Z

(∫ 2

1

∥∥∥(∑
k∈Z
|gt,j,k|q

)1/q∥∥∥q
Lp(Rn)

dt
)r/q)1/r

.

Proof. We shall prove this lemma by employing the idea in the proof of Propo-
sition 3.1 in [31]. We notice that for each fixed j ∈ Z and any functions {ht,k},

(17)
∥∥∥ sup
k∈Z

sup
t∈[1,2]

|Sj−kht,k|
∥∥∥
Lp(Rn)

≤
∥∥∥ sup
k∈Z

sup
t∈[1,2]

|ht,k|
∥∥∥
Lp(Rn)

for 1 < p <∞;

(18)
∥∥∥∑
k∈Z

∫ 2

1

|Sj−kht,k|dt
∥∥∥
L1(Rn)

≤ C
∥∥∥∑
k∈Z

∫ 2

1

|ht,k|dt
∥∥∥
L1(Rn)

.

Interpolation between (17) and (18) yields

(19)
∥∥∥(∑

k∈Z

∫ 2

1

|Sj−kht,k|qdt
)1/q∥∥∥

Lp(Rn)
≤ C

∥∥∥(∑
k∈Z

∫ 2

1

|ht,k|qdt
)1/q∥∥∥

Lp(Rn)

for all 1 < p < q <∞. (19) and Minkowski’s inequality imply

(20)

∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤
∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣Sj−kgt,j,k∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤ C
∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

|gt,j,k|qdt
)1/q∥∥∥

Lp(Rn)
for 1 < p < q <∞.

On the other hand, by the similar arguments as in getting (3.5) in [31], we can
get

(21)

∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣2dt)1/2∥∥∥
L2(Rn)

≤ C
(∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

|gt,j,k|2dt
)1/2∥∥∥2

L2(Rn)

)1/2

.

Define the mapping ~ by

~ : {gt,j,k(x)}j,k∈Z,t∈[1,2] →
{∑
j∈Z

Sj−kgt,j,k(x)
}
k∈Z,t∈[1,2]

.

It follows from (20) and (21) that ~ maps `1(Lp(`q(Lq([1, 2])),Rn)) into
Lp(`q(Lq([1, 2])),Rn) for 1 < p < q < ∞, and maps `2(L2(`2(L2([1, 2])),Rn))
into L2(`2(L2([1, 2])),Rn). By interpolation we obtain that ~ is bounded from
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`r(Lp(`q(Lq([1, 2])),Rn)) to Lp(`q(Lq([1, 2])),Rn) for 1 < p < q and 1 < r < p.
This gives (15).

It remains to prove (16). If follows from (21) that∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣2dt)1/2∥∥∥
L2(Rn)

≤ C
(∑
j∈Z

∫ 2

1

∥∥∥(∑
k∈Z
|gt,j,k|2

)1/2∥∥∥2

L2(Rn)
dt
)1/2

.

This yields that ~ is bounded from `2(L2(L2(`2,Rn), [1, 2])) to L2(`2(L2([1, 2])),
Rn). On the other hand, by Minkowski’s inequality and the Littlewood-Paley
theory (see [11, Proposition 5.1.4]),∥∥∥(∑

k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤
∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣Sj−kgt,j,k∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤
∑
j∈Z

(∫ 2

1

∥∥∥(∑
k∈Z
|Sj−kgt,j,k|q

)1/q∥∥∥q
Lp(Rn)

dt
)1/q

≤ C
∑
j∈Z

(∫ 2

1

∥∥∥(∑
k∈Z
|gt,j,k|q

)1/q∥∥∥q
Lp(Rn)

dt
)1/q

for 1 < q < p <∞.

This yields that ~ is bounded from `1(Lq(Lp(`q,Rn), [1, 2])) to Lp(`q(Lq([1, 2])),
Rn) for 1 < q < p <∞. Then (16) follows from the interpolation. �

4. Proofs of Theorems 1.2 and 1.4

This section is devoted to presenting the proofs of Theorems 1.2 and 1.4.

Proof of Theorem 1.2. Let P be a real polynomial on R of degree N and satisfy

P (0) = 0. Without loss of generality we may assume that P (t) =
∑N
i=1 bit

i

with each bi 6= 0. Let P0(t) = 0 and Pλ(t) =
∑λ
i=1 bit

i for λ ∈ {1, 2, . . . , N}.
For 0 ≤ λ ≤ N , we define the family of measures {σλk,t} by σλk,t = σΩ,Γ,k,t with

d = n and Γ(y) = Pλ(ϕ(|y|))y′. Here σΩ,Γ,k,t is defined as in (3). We first
proved that for 1 ≤ λ ≤ N , the following are valid:

(22) σ̂0
k,t(ξ) = 0;

(23) |σ̂λk,t(ξ)| ≤ ‖Ω‖L1(Sn−1);

(24) |σ̂λk,t(ξ)− σ̂
λ−1
k,t (ξ)| ≤ ‖Ω‖L1(Sn−1)ϕ(2kt)λ|bλξ|;

(25) |σ̂λk,t(ξ)| ≤ C(logϕ(2kt)λ|bλξ|)−β if ϕ(2kt)λ|bλξ| > 1.
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Here C > 0 is independent of the coefficients of PN . By a change of variable,

(26) σ̂λk,t(ξ) =
1

(2kt)ρ

∫ 2kt

2k−1t

∫
Sn−1

e−2πiξ·Pλ(ϕ(r))y′Ω(y′)dσ(y′)
dr

r1−ρ .

Then (22) follows easily from (26) and (1). (23) is obvious. We get easily from
(26) and the property of ϕ that

|σ̂λk,t(ξ)− σ̂
λ−1
k,t (ξ)| ≤ ‖Ω‖L1(Sn−1)ϕ(2kt)λ|bλξ|.

This gives (24). On the other hand, by (23), Lemma 2.2 in [15] and the fact
Ω ∈ Fβ(Sn−1),

(27)

|σ̂λk,t(ξ)| ≤
∫

Sn−1

|Ω(y′)|
∣∣∣ 1

(2kt)ρ

∫ 2kt

2k−1t

e−2πiPλ(ϕ(r))ξ·y′ dr

r1−ρ

∣∣∣dσ(y′)

≤ C
∫

Sn−1

|Ω(y′)|min{1, |ϕ(2kt)λbλξ · y′|−1/λ}dσ(y′)

≤ C
∫

Sn−1

|Ω(y′)| (log eβλ|ξ′ · y′|−1)β

(logϕ(2kt)λ|bλξ|)β
dσ(y′)

≤ C(logϕ(2kt)λ|bλξ|)−β ,

whenever ϕ(2kt)λ|bλξ| > 1. This proves (25). Here in the third inequality of
(27) we have used the fact that t

(log t)β
is increasing in (eβ ,∞).

By Minkowski’s inequality, we can write

(28)

µqΩ,P,ϕ,ρf(x) =
(∫ ∞

0

∣∣∣ 0∑
k=−∞

2kρσNk,t ∗ f(x)
∣∣∣q dt
t

)1/q

=
(∫ ∞

0

∣∣∣ 0∑
k=−∞

2kρσN0,t ∗ f(x)
∣∣∣q dt
t

)1/q

≤
0∑

k=−∞

2kς
(∑
k∈Z

∫ 2k+1

2k
|σN0,t ∗ f(x)|q dt

t

)1/q

≤ 1

1− 2−ς

(∑
k∈Z

∫ 2

1

|σNk,t ∗ f(x)|q dt
t

)1/q

≤ 1

1− 2−ς

(∑
k∈Z

∫ 2

1

|σNk,t ∗ f(x)|qdt
)1/q

.

Let ψ be a C∞0 (R) function such that ψ(t) ≡ 1 for |t| ≤ 1/2 and ψ(t) ≡ 0 for
|t| > 1. For 1 ≤ λ ≤ N and ξ ∈ Rn, we define the family of measures {νλk,t} by

(29) ν̂λk,t(ξ) = σ̂λk,t(ξ)

N∏
j=λ+1

ψ(ϕ(2kt)j |bjξ|)− σ̂λ−1
k,t (ξ)

N∏
j=λ

ψ(ϕ(2kt)j |bjξ|).
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From (22) we see that

(30) σNk,t =

N∑
λ=1

νλk,t.

Here we use the convention Πj∈∅aj = 1. By (22)-(25) and (29), there exists
C > 0 independent of the coefficients of PN such that for 1 ≤ λ ≤ N ,

(31) |ν̂λk,t(ξ)| ≤ C min{1, ϕ(2kt)λ|bλξ|};

(32) |ν̂λk,t(ξ)| ≤ C(logϕ(2kt)λ|bλξ|)−β if |ϕ(2kt)λ|bλξ| > 1.

We get from (28), (30) and Minkowski’s inequality that

(33) µqΩ,P,ϕ,ρf(x) ≤ C(ζ)

N∑
λ=1

(∑
k∈Z

∫ 2

1

|νλk,t∗f(x)|qdt
)1/q

=: C(ζ)

N∑
λ=1

Dλf(x),

where

Dλf(x) =
(∑
k∈Z

∫ 2

1

|νλk,t ∗ f(x)|qdt
)1/q

.

Thus, to prove Theorem 1.2, it suffices to show that

(34) ‖Dλf‖Lp(Rn) ≤ Cp‖f‖Ḟ 0
p,q(Rn)

for p ∈ (1 + 1/(2β), 1 + 2β) and q ∈ (1 + 1/(2β), 1 + 2β).
We now prove (34). For 1 ≤ λ ≤ N . Define the multiplier operator Sk,λ in

Rn by
Sk,λf(x) = Ψk,λ ∗ f(x),

where Ψk,λ is defined by Ψk,λ(ξ) = Φk(ξ), where Φk is given as in Lemma 2.1
with ak = ϕ(2−k)−λ|bλ|−1. By the properties of ϕ we have

1 < Bλϕ ≤
ak+1

ak
≤ cλϕ ∀k ∈ Z.

This together with Lemma 2.1 yields that for 1 ≤ λ ≤ N and 1 < p, q <∞,

(35)
∥∥∥(∑

k∈Z
|Ψk,λ ∗ f |q

)1/q∥∥∥
Lp(Rn)

∼ ‖f‖Ḟ 0
p,q(Rn).

By Minkowski’s inequality and the definition of Ψk,λ, we can write

(36) Dλf(x) =
(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−k,λ(νλk,t ∗Ψj−k,λ ∗ f)(x)
∣∣∣q dt
t

)1/q

.

We consider the following two cases:
Case 1. q ∈ (1 + 1/(2β), 1 + 2β) and p ∈ (1 + 1/(2β), q). By (i) of Lemma

3.3 and (36), we can get

‖Dλf‖Lp(Rn) ≤ C
(∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

|νλk,t ∗Ψj−k,λ ∗ f(x)|qdt
)1/q∥∥∥r

Lp(Rn)

)1/r
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≤ C
(∑
j∈Z
‖Iλ,j,qf‖rLp(Rn)

)1/r

(37)

for 1 < r < p, where

Iλ,j,qf(x) =
(∑
k∈Z

∫ 2

1

|νλk,t ∗Ψj−k,λ ∗ f(x)|q dt
t

)1/q

.

By (31)-(32) and Plancherel’s theorem, we get that

(38)

‖Iλ,j,qf‖2L2(Rn) =
∑
k∈Z

∫
Rn

∫ 2

1

|νλk,t ∗Ψj−k,λ ∗ f(x)|2dtdx

≤
∑
k∈Z

∫
Ej−k

∫ 2

1

|ν̂λk,t(x)|2dt|f̂(x)|2dx

≤ CB2
j

∑
k∈Z

∫
Ej−k

|f̂(x)|2dx

≤ CB2
j ‖f‖2L2(Rn),

where Ej−k = {x ∈ Rn : ϕ(2k−j+1)−λ ≤ |bλx| ≤ ϕ(2k−j−1)−λ} and

Bj = |j|−βχ{j≥2}(j) +B−|j|λϕ χ{j≤1}(j).

(38) together with the fact that Ḟ 0
2,2(Rn) = L2(Rn) yields that

(39) ‖Iλ,j,2f‖L2(Rn) ≤ CBj‖f‖Ḟ 0
2,2(Rn).

On the other hand, by Lemma 3.2, we have that there exists C > 0 independent
of the coefficients of PN such that
(40)∥∥∥(∑

k∈Z

∫ 2

1

|σλk,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rn)
≤ C‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for 1 < p < ∞ and 1 < q < ∞. By (40) and the definition of νλ,t, one can
check that
(41)∥∥∥(∑

k∈Z

∫ 2

1

|νλk,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rn)
≤ C‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for 1 < p <∞ and 1 < q <∞. Combining (41) with (35) implies

(42) ‖Iλ,j,qf‖Lp(Rn) ≤ C‖Ω‖L1(Sn−1)‖f‖Ḟ 0
p,q(Rn)

for 1 < p < ∞ and 1 < q < ∞. By interpolation between (40) and (42), for
p ∈ (1 + 1/(2β), q), there exist C > 0 and θ ∈ (2/(2β + 1), 1) such that

(43) ‖Iλ,j,qf‖Lp(Rn) ≤ Bθj ‖f‖Ḟ 0
p,q(Rn).
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Fix p ∈ (1 + 1/(2β), q), we can choose 1 < r < p such that rθβ > 1. Thus, we
get from (38) that for p ∈ (1 + 1/(2β), q),

‖Dλf‖Lp(Rn) ≤ C
(∑
j∈Z

Bθrj

)1/r

‖f‖Ḟ 0
p,q(Rn) ≤ C‖f‖Ḟ 0

p,q(Rn).

This proves (34) for the case q ∈ (1 + 1/(2β), 1 + 2β) and p ∈ (1 + 1/(2β), q).
Case 2. q ∈ (1 + 1/(2β), 1 + 2β) and p ∈ (q, 1 + 2β). By (36) and (ii) of

Lemma 3.3, we have
(44)

‖Dλf‖Lp(Rn) ≤ C
(∑
j∈Z

(∫ 2

1

∥∥∥(∑
k∈Z
|νλk,t ∗Ψj−k,λ ∗ f(x)|q

)1/q∥∥∥q
Lp(Rn)

dt
)r/q)1/r

for any r ∈ (1, p′). For t ∈ [1, 2], let

Jλ,j,q,tf(x) =
(∑
k∈Z
|νλk,t ∗Ψj−k,λ ∗ f(x)|q

)1/q

.

We get from (44) that

(45) ‖Dλf‖Lp(Rn) ≤ C
(∑
j∈Z

(∫ 2

1

‖Jλ,j,q,tf‖qLp(Rn)dt
)r/q)1/r

.

Fix t ∈ [1, 2]. By Lemma 3.2 and the argument similar to those used to derive
(41),

(46)
∥∥∥(∑

k∈Z
|νλk,t ∗ gk|q

)1/q∥∥∥
Lp(Rn)

≤ C‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for 1 < p <∞ and 1 < q <∞. (46) together with (35) yields that

(47) ‖Jλ,j,q,tf‖Lp(Rn) ≤ C‖Ω‖L1(Sn−1)‖f‖Ḟ 0
p,q(Rn)

for 1 < p <∞ and 1 < q <∞. By the similar arguments as in getting (39),

(48) ‖Jλ,j,2,tf‖L2(Rn) ≤ CBj‖f‖Ḟ 0
2,2(Rn).

Interpolation between (47) and (48) yields that for fixed p ∈ (q, 1+2β), we can
choose r ∈ (1, p′) and δ ∈ (2/(2β + 1), 1) such that rδβ > 1 and

(49) ‖Jλ,j,q,tf‖Lp(Rn) ≤ CBδj ‖f‖Ḟ 0
p,q(Rn).

Here C > 0 is independent of t and the coefficients of P . (49) together with
(45) yields (34) for the case q ∈ (1 + 1/(2β), 1 + 2β) and p ∈ (q, 1 + 2β).

The case p = q and q ∈ (1 + 1/(2β), 1 + 2β) can be obtained by the in-
terpolation between Case 1 and Case 2. This finishes the proof of Theorem
1.2. �
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Proof of Theorem 1.4. By the argument similar to those used in deriving
Lemma 4.2 in [21], we can obtain that for λ > 1 and 1 < q < ∞, there
exists a constant C(n, λ) > 0 such that for any nonnegative locally integrable
function g on Rn,

(50)

∫
Rn

(Mλ,q,∗
Ω,P,ϕ,ρf(x))qg(x)dx ≤ C(n, λ)

∫
Rn

(µqΩ,P,ϕ,ρf(x))qMg(x)dx,

where M is the usual Hardy-Littlewood maximal operator on Rn. Fix 1 < q ≤
p <∞, by duality, Lp bounds for M , Hölder’s inequality and (50), we have

‖Mλ,q,∗
Ω,P,ϕ,ρf‖

q
Lp(Rn) = sup

‖g‖
L(p/q)′ (Rn)

≤1

∫
Rn

(Mλ,q,∗
Ω,P,ϕ,ρf(x))qg(x)dx

≤ C(n, λ) sup
‖g‖

L(p/q)′ (Rn)
≤1

∫
Rn

(µqΩ,P,ϕ,ρf(x))qMg(x)dx

≤ C(n, λ, p, q)‖µqΩ,P,ϕ,ρf‖
q
Lp(Rn),

which together with Theorem 1.2 yields Theorem 1.4 for Mλ,q,∗
Ω,P,ϕ,ρ. On the

other hand, one can easily check that

Mq
Ω,P,ϕ,ρ,Sf(x) ≤ 2nλ/qMλ,q,∗

Ω,P,ϕ,ρf(x).

This together with the bounds for Mλ,q,∗
Ω,P,ϕ,ρ implies the bounds for Mq

Ω,P,ϕ,ρ,S .
�
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