• Title/Summary/Keyword: polymethacrylate

Search Result 18, Processing Time 0.033 seconds

Optical Anisotropy of Polyimide and Polymethacrylate Containing Photocrosslinkable Chalcone Group in the Side Chain under Irradiation of a Linearly Polarized UV Light

  • Choi, Dong-Hoon;Cha, Young-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.469-476
    • /
    • 2002
  • Photocrosslinkable soluble polyimide and polymethacrylate compound were synthesized for studying the optically induced anisotropy of the thin films. Chalcone group was introduced into the side chain unit of two polymers. We observed a photodimerization behavior between the double bonds in the chalcone group and an optical anisotropy of these materials by irradiation of a linearly polarized UV light (LPL). Optical anisotropy of the thin film was also investigated by using polarized UV absorption spectroscopy. The dynamic property of optical anisotropy in photoreactive polyimide was compared to that in polymethacrylate containing chalcone group in the side chain.

Effect of Variation in the Molecular Structure on the Miscibility of Modified Polystyrene/Polymethacrylate Blends (Modified Polystyrene/Polymethacrylate 블렌드의 상용성에 대한 분자구조 변화의 영향)

  • Koo, Chung-Wan;Kim, Hyung-Il;Kim, Byeong Cheol
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.743-747
    • /
    • 1999
  • The component polymer was modified to enable the formation of intermolecular hydrogen bonding in the immiscibile polystyrene(PS)/polymethacrylate(PMA) blends. The mole percentages of hydroxystyrene of the poly(styrene-co-4-hydroxystyrene) copolymer(modified polystyrene, MPS) were controlled to 7%, 10% and 18%, respectively. MPS was used with PMA to study the variation of the miscibility in blends. PMA which had such different length of side chain as methyl, butyl, hexyl and ethylhexyl, respectively, was selected to study the effect of side chain length on the formation of intermolecular hydrogen bonding. As the hydroxyl content of MPS increased, the formation of intermolecular hydrogen bonding increased. The length of side chain of PMA had enormous effect on the miscibility of blend as confirmed from the result of cloud point measurement. As the length of side chain increased, the formation and the strength of intermolecular hydrogen bonding decreased severely due to the steric effect and the increased chain mobility.

  • PDF

Liquid Crystal Alignment on the Films of Polymethacrylate and Polyurethane Bearing an Aminotroazobenzene Chromophore

  • Park, Dong-Hoon;Kim, Jae-Hyung;Cho, Kang-Jin
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.172-178
    • /
    • 2000
  • We synthesized polymethacrylate and polyurethane bearing a photosensitive azobenzene chromophore. Photo-induced birefringence of the thin film was observed under a linearly polarized light(λ = 532 nm). Dynamic behaviors of birefringence in two polymers were investigated in terms of the rate constants of growth and decay. An induced dichroism was observed from polarized UV-VIS absorption spectroscopy. Layers of two photosensitive polymers were used for aligning liquid crystal (LC) molecules instead of one of the rubbed polyimide layers in the conventional twisted nematic cell. For producing homogeneous alignment of a nematic LC molecule, a linearly polarized light was exposed to the films of two polymers. The stability of the LC alignment upon the linearly polarized light exposure was also studied.

  • PDF

Effect of Molecular Aggregation on the Photo-Induced Anisotropy in Amorphous Polymethacrylate Bearing an Aminonitroazobenzene Moiety

  • Kim, Beom Jun;Park, Su Yeong;Choe, Dong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.271-275
    • /
    • 2001
  • We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment an d that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of a linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light.

Study on Graft Polymerization of Acrylate and Methacrylate Monomers onto the Carbon Black Surface (Carbon Black 표면에의 아크릴레이트 및 메타크릴레이트의 그라프트 중합에 관한 연구)

  • Goo, Hyung-Seo;Chang, Byung-Kwon;Kim, Yong-Moo;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.395-405
    • /
    • 1994
  • The various functional groups, such as hydroxyl(-OH), carboxyl(-COOH) and quinonic oxygen(OC<) on the carbon black(abbreviated to CB) surface were activated with n-butyl lithium solution in n-hexane and then acrylate and methacrylate monomers were graft polymerized onto these activated anionic sites and CB-grafted polymers were obtained. To separate homopolymers from reaction mixture, non-solvent precipitation method or centrifugal separating method were applied. Subsequently, conversion, grafting ratio and efficiency were determined at various reaction temperatures and times. In case of acrylates, the grafting ratio showed 20~30% but methacrylates showed 150~200%. Also the anion polymerizations between CB and monomers were nearly reached to equilibrium state within one or two hours under each reaction temperatures but conversion and grafting ratio were increased a little with reaction temperature increase. In colloidal dispersion stability test, before heat-drying, the all CB-grafted polymers showed good dispersed stability in good solvents for acrylic and methacrylic homopolymers. Futhermore, CB-polymethacrylates were found to show excellent collidal properties for good solvents of methacrylic homopolymer even after heat-drying. Identification of the grafted polyacrylates and polymethacrylates onto the CB surface was performed by FT-IR spectroscopy. In addition, electric resistance values of CB-grafted polymers were measured by Four-probe method, and the increase of the grafting ratio showed the increase of the surface resistance.

  • PDF

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Polymeric Gel Electrolytes for Electric Double Layer Capacitors (전기이중층 캐패시터에 관한 폴리머 겔 전해액)

  • Morita, Masayuki;Qiao, Jin-Li
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.141-144
    • /
    • 2003
  • Proton conducting polymeric gels as the electrolytes of electrochemical capacitors have been prepared by two different methods: 1) swelling a polymethacrylate-based polymer matrix in aqueous solutions of inorganic and organic acids, and 2) polymerizing complexes of anhydrous acids and prepolymers with organic plasticizer. The FT-IR spectra strongly suggest that the carbonyl groups in the polymer matrix interact with protons from the doped acids. High ionic (proton) conductivity in the range of $6\times10^{-4}-4\times10^{-2}\;S\;cm^{-1}$ was obtained at room temperature for the aqueous gels. The non-aqueous polymer complexes showed rather low ionic conductivity, but it was about $10^{-3}\;S\;cm^{-1}\;at\;70^{\circ}C$ for the $H_3PO_4$ doped polymer electrolyte. The mechanisms of ion (proton) conduction in the polymeric systems are discussed.