• Title/Summary/Keyword: polymerization reaction

Search Result 612, Processing Time 0.026 seconds

Scale-up Polymerization of L -Lactide in Supercritical Fluid (초임계 유체에서 L-Lactide의 Scale-up 중합)

  • Prabowo, Benedictus;Kim, Se-Yoon;Choi, Dong-Hoon;Kim, Sao-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.284-288
    • /
    • 2011
  • For the purpose of the pre-industry production of poly(L-lactide) (PLLA) and full understanding of the supercritical polymerization system, large scale polymerization of L-iactide initiated by 1-dodecano/stannous 2-ethyl-hexanoate (DoOH/Sn(Oct)$_2$) was carried out in supercritical chlorodifluoromethane under various reaction conditions (time, temperature and pressure)and reactants (monomer and supercritical solvent) concentrations. A 3 L sized-reactor system was used throughout this study. The monomer conversion increased to 72% on increasing reaction time to 5 h. The molecular weight of PLLA product also increased to 68000 g/moi over the same period. An increase in monomer concentration resulted in a higher molecular weight, up to 144000 g/mol and 97% of monomer conversion. Raising the reaction pressure from 130 to 240 bar also resulted in an increased monomer conversion and molecular weight. To increase heat resistivity of PLLA, methanol treatment and heat-vacuum methods were evaluated. Both of them successfully improved the heat resistivity property of PLLA.

Afterpolymerization and Depolymerization of Poly-${\varepsilon}$-caproamide in Solid State (고체상태에서 Poly-${\varepsilon}$-caproamide의 후중합 및 해중합에 관한 연구)

  • Jung-Ji Moon;Dong-ho Lee;Tae-oan Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.450-454
    • /
    • 1973
  • The afterpolymerization and depolymerization of poly-${\varepsilon}$-caproamide in solid state have been studied under two different reaction conditions, nitrogen flow and sealed state. The degree of polymerization ($\bar{P}$) of nylon 6 increased with the increase in reaction time and temperature, and then reacted finally an equilibrium. In the presence of oxygen, $\bar{P}$ decreased by increasing the reaction time due to the oxidation reaction. Under certain reaction condition, the change of $\bar{P}$ for different initial degree of polymerization ($\bar{P}_0$) tendered toward unity in equilibrium.

  • PDF

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

Reactive Extrusion of Starch-g-Polyacrylonitrile in the Preparation of Absorbent Materials

  • Yoon, Kee-Jong;Carr, M.E.;Bagley, E.B.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.8-8
    • /
    • 1990
  • A new method for the graft polymerization of acrylonitrile onto starch is presented. Graft polymerization of acrylonitrile onto starch and the subsequent hydrolysis in sodium hydroxide solution to prepare absorbents is well known. This process has been utilized to produce the commercial product, Super Slurper. In a typical batch process, ~5% starch in water mixture is gelatinized at $95^{\circ}C$ under stirring for 1 hour then cooled to room temperature. The graft polymerization itself is carried out for approximately 2 hours at $25~30^{\circ}C$ on the gelatinized starch by eerie ion initiation. In this study, graft polymerization of acrylonitrile onto starch via a reactive extrusion process which is a continuous, efficient process is described. Initial concentration of starch in water is 35% and the reaction temperatures are between $50~80^{\circ}C$. However, the most significant difference in the reactive extrusion process is the short time in which the graft polymerization takes place. Preliminary results on the properties of graft polymerization products obtained from the reactive extrusion process are compared to those obtained from the batch process as well as the absorbency of the hydrolyzed samples. Absorbent material has also been prepared by sequential grafting and saponification in the extruder followed by a 2 hour heat treatment of the extrudate in an air circulated oven at $100^{\circ}C$.

  • PDF

A NEW METHOD - REAL TIME MEASUREMENT OF THE INITIAL DYNAMIC VOLUMETRIC SHRINKAGE OF COMPOSITE RESINS DURING POLYMERIZATION (복합레진의 초기 동적 체적 중합수축의 실시간 측정 -새로운 측정장치의 개발에 대한 소고-)

  • 이인복
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2001
  • The polymerization shrinkage of composite resins is an important drawback although the composites have many advantages-more esthetic and conservative than metallic restoratives etc. The purposes of this research were to develop a new measurement method and to manufacture an instrument that can measure the initial dynamic volumetric shrinkage of composite resins during polymerization. The instrument was basically an electromagnetic balance that constructed with a force transducer using position sensitive photo detector(PSPD) and a negative feedback servo amplifier of proportional-derivative(PD) controller. The volumetric change of composites during polymerization was detected continuously as buoyancy change in distilled water by means of Archimedes's principle. It was converted to continuous electrical voltage signal in real time. The signal was properly conditioned and filtered and then it was stored in computer by a data acquisition(DAQ) board. By using this electronic instrument. the dynamic patterns of the polymerization shrinkage of eight commercial(Z-100, DenFil, AeliteFil, Z-250, P-60, SureFil, Synergy compact, and Tetric ceram) composite resins were measured and compared. The results were as follows. 1. From this project of developing instrument, the ability has been achieved that can acquire and process data of electrical signal transformed from various physical phenomenon by using temperature, displacement. photo. and force transducer. As a consequence, the instrumentation and measurement system used to analyze the physical characteristics of various dental materials in dental research field can be designed, manufactured and implemented in lab. 2. This instrument has some advantages. It was insensible to temperature change and could measure true dynamic volumetric shrinkage in real time without complicated process. It showed accuracy and high precision results with small standard deviation. 3. The polymerization shrinkage of composites was significantly different between brands and ranged from 2.47% to 3.89%, The order of polymerization shrinkage was as follows, in order of increasing shrinkage, SureFil, P60, Z250, Z100, Synergy compact. DenFil, Tetric ceram, and AeliteFil. 4. The polymerization shrinkage rate per unit time, dVol%/dt, showed that the instrument can provide an indirect research method for polymerization reaction kinetics.

  • PDF

Microwave-Assisted Cationic Ring-Opening Polymerization of Cyclic Imino Ethers

  • Hoogenboom Richard;Schubert Ulrich S.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.199-199
    • /
    • 2006
  • Microwave-irradiation has become a common heat source in organic chemistry in the last decade. In recent years, polymer chemists also discovered the advances of microwave heating that include fast and efficient heating as well as the homogeneous heat profile and the easy access to pressurized reaction conditions. In this contribution, we report our investigations on the cationic ring-opening polymerization of 2-oxazolines that lead to a tremendous acceleration from several days to several minutes polymerization time. In addition, the optimized microwave-assisted polymerization procedure was applied for the preparation of libraries of diblock and triblock copolymers that were used for the determination of structure-property relationships in poly(2-oxazoline)s.

  • PDF

Reaction Properties of Dinuclear Metallocenes

  • Noh Seok-Kyun;Jeong Eung-Yeong;Qei Duang Huang Dan;Lyoo Won-Seok
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.224-225
    • /
    • 2006
  • The Ethylene polymerization behavior of a series of polymethylene bridged dinuclear CGC $[Zr({\eta}^{5}:{\eta}^{1}-C_{9}H_{5}SiMe_{2}NCMe_{3})Me_{2}]_{2}[(CH_{2})_{n}]\;[_{n}=6(1),\;9(2),\;12(3)]$ in the cocatalytic activation with $Ph_{3}C^{+}B^{-}(C_{6}F_{5})_{4}\;(B_{1})\;or\;Ph_{3}C^{+}(C_{6}F_{5})_{3}B^{-}C_{6}F_{4}B^{-}(C_{6}F_{5})_{3}Ph_{3}C^{+}\;(B_{2})\;or\;B(C_{6}F_{5})_{3}\;(B_{3})$ were investigated to study the nuclearity effects as well as the counteranion effects. The ethylene polymerization and ethylene/1-hexene copolymerization were conducted at $30^{\circ}C$ It was found that both in ethylene polymerization and ethylene/1-hexene copolymerization, activities increased in the order of 1 < 2 < 3, which indicates the presence of longer bridge between two active sites contributes more efficiently to facilitate the polymerization activity.

  • PDF

Controlling the Size and Surface Morphology of Carboxylated Polystyrene Latex Particles by Ammonium Hydroxide in Emulsifier-free Polymerization

  • Dong, Hyun-Bae;Lee, Sang-Yup;Yi, Gi-Ra
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.397-402
    • /
    • 2009
  • In emulsifier-free, emulsion polymerization with ionizable comonomer, the ionization of the comonomer is critical in determining the size of the final polymerie particles at sub-micrometer scale. In this study, polystyrene latex beads with carboxylates on the surface were synthesized using acrylic acid as a comonomer. Specifically, ammonium hydroxide was added to the emulsifier-free polymerization system to promote the ionization of acrylic acid by increasing pH. Smaller polystyrene latex particles were produced by increasing the ammonium hydroxide concentration in the reaction system, due to the enhanced stability promoted by the ionization of acrylic acid during the nucleation step. In addition, the surface morphology of the polystyrene latex particles was controlled by the concentration of acrylic acid, the dissociation of which was influenced by the ammonium hydroxide concentration.

Property Control in a Continuous MMA Polymerization Reactor using EKF based Nonlinear Model Predictive Controller

  • Ahn, Sung-Mo;Park, Myung-June;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • A mathematical model was developed for a continuous re-actor in which free radical polymerization of methyl methacrylate (MMA) occurred. Elementary reactions considered in this study were initiation, propagation, termination, and chain transfers to monomer and solvent. The reactor model took into account the density change of the reactor contents and the gel effect. A control system was designed for a continuous reactor using extended Kalman filter (EKF) based non-linear model predictive controller (NLMPC) to control the conversion and the weight average molecular weight of the polymer product. Control input variables were the jacket inlet temperature and the feed flow rate. For the purpose of validation of the control strategy, on-line digital control experiments were conducted with densitometer and viscometer for the measurement of the polymer properties. Despite the com-plex and nonlinear features of the polymerization reaction system, the EKF based NLMPC performed quite satisfactorily for the property control of the continuous polymerization reactor.

  • PDF

Radical Polymerization of Vinyl Monomers to Poly(vinyl)s having nBu3Sn end Groups with Biological Activity

  • Park, Jaeyoung;Lee, Beomgi;Kim, Seongsim;Cheong, Hyeonsook;Gwak, Gyeongja;Lee, Ki Bok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2013
  • $Bu_3Sn$-endded poly(vinyl)s with biological activity were obtained by the radical polymerization of vinyl monomers using thianthrene cation radical/$^nBu_3H$. Thianthrene cation and stannyl radicals promoted the homopolymerization and copolymerization of styrene and ethyl vinyl ether having number average molecular weights of 2000-3100. Tributyltin hydride functions as a chain transfer agent. Such polymereization by cationic thianthrene and stannyl radicals could provide some clues for the biological reaction in living animals. Plausible polymerization mechanisms were suggested.