• Title/Summary/Keyword: polymerization rate

Search Result 360, Processing Time 0.032 seconds

Synthesis and Photopolymerization Characterization of Propenyl Ether Monomers (프로페닐 에테르 단량체들의 합성과 광중합 특성)

  • Kim, Ki-Sang;Shim, Sang-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • The propenyl ether-type monomers which are applicable for cationic photo-polymerization were synthesized by the condensation reaction of mono and di-functional alcohol with allyl bromide. To examine photo-curable reactivity, these monomers were combined with cationic photoinitiator to prepare coating composition. As a result, the initial rate of polymerization of POMB in mono propenyl ether type was 10.2, which was relatively lower than BPOB in di-propenyl ethers type. However, POMB containing 1.5mol% photoinitiator almost quantitatively reacted within 90 seconds. In addition, Sulfonium salt type photo-initiators containing long-alkyl group showed good solubility with monomers and apperaed to have comparatively higher rate of polymerization and conversion ratio when applying DPSA and DPST which have high acidity on all monomers.

Preparation and Characterization of Nano-sized Hydrogels (nanogels) Using Inverse-miniemulsion Polymerization Method for Protein Drug Delivery (단백질 약물 전달을 위한 Inverse-miniemulsion Polymerization 방법으로 제조하는 나노크기의 수화젤(나노젤)의 제조 및 특성평가)

  • Kang, Soo-Yong;Munkhjargal, Odonchimeg;Kim, Seong-Cheol;Park, Ah-Reum;Shim, Young-Key;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • Hydrogels are thought to be a promising delivery carrier for protein drugs because of their favorable aqueous environment compared with nano/micro-particles of hydrophobic polymer such as PLGA. In this study, nano-sized hydrogels (nanogels) were fabricated using inverse-miniemulsion polymerization method. The mean size of nanogels in range of 90-160nm and affected by the preparation parameters such as sonication time and concentration of monomer. While longer sonication time and lower concentration of acrylamide monomer showed a tendency to produce smaller nanogels and to have lower lysozyme activity, variation of bis-methylene acrylamide concentration made no difference. Although both longer soncaton time and lower acrylamide concentration increased in vitro release rate, acrylamide concentration was more effectively affected to the control of protein release rate, which indicated that the release rate of protein from nanogels affected by not only their size but also internal structure. In conclusion, nanogels prepared by inverse-miniemulsion can be a useful carrier for application of protein drug, because of simple process, minimum contact of organic solvent and high protein activity.

Synthesis and Performance Evaluation of Linear Polycarboxylate Dispersant of Glacial Acrylic Acid - Maleic Acid- Sodium Methallyl Disulfonate for Ceramics

  • Kommanapalli, Kiran Kumar;Lyot, Pierre;Sunkara, Jhansi Rani;Checule, Pierrick
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.126-134
    • /
    • 2018
  • Using aqueous solution free radical polymerization with glacial acrylic acid (GAA), maleic anhydride (MA) and sodium methallyl disulfonate (SMADS), a novel linear polycarboxylate dispersant was synthesized for ceramics. Dispersant linear structural characterization was done by FTIR, $^1H$ NMR, HPLC and GPC, and the ratio of monomers was determined using an orthogonal experiment. This research is focused on the effects of polymerization temperature, monomer mole ratios and dosage of initiator on ceramic slurry viscosity with linear polycarboxylate dispersant for ceramic dosage rate of 0.30% (based on dry slurry), all of which were investigated by single factor test. The best polymerization conditions for linear GAA-MA-SMADS are when n(AA) : n(MA) : n(SMADS) equals 3.0 : 1.0 : 0.5, the molecular weight of the polymer is 4600 daltons, the initiator sodium persulfate accounts for 7% of the total mass of polymerized monomers, the polymerization temperature is $90^{\circ}C$ and the reaction time is 2 h. The ceramic body slurry viscosity drops from $820mPa{\cdot}s$ to $46mPa{\cdot}s$ when the concentration of the polycarboxylate dispersant is 0.30%.

Radical Polymerization of Methyl Methacrylate with Tricaprylmethylammonium Chloride (Tricaprylmethylammonium Chloride에 의한 Methyl Methacrylate의 라디칼 중합)

  • Park, Sang-Wook;Moon, Jin-Bok;Ha, Yoo-Su;Kim, Jong-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.300-307
    • /
    • 1993
  • The phase-transfer polymerization of methyl methacrylate with tricaprylmethylammonium chloride-$Na_2S_2O_4-CCl_4$ initiator system was investigated in an aqueous-organic two-phase system. The observed rates of polymerization were compared with those obtained from the polymerization mechanism proposed with a cyclic phase-transfer initiation step. The rate of polymerization was found to be proportional to the concentration of $Q^+$ and square root of ${S_2O_4}^{-2}$ in the aqueous solution and the feed quantity of $CCl_4$ and MMA.

  • PDF

Preparation of Poly(vinyl acetate)/Clay and Poly(vinyl acetate)/ Poly(vinyl alcohol)/Clay Microspheres

  • Jung Hye-Min;Lee Eun-Mi;Ji Byung-Chul;Sohn Sung-Ok;Ghim Han-Do;Cho Hyun-Ju;Han Young-A;Choi Jin-Hyun;Yun Jae-Deuk;Yeum Jeong-Hyun
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • Poly(vinyl acetate) (PVAc)/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) clay nanocomposite microspheres with a core/shell structure have been developed via a suspension polymerization approach. In order to prepare the PVAc/ MMT and PVAc/PVA/MMT nanocomposite microspheres, which are promising precursor of PVA/MMT nanocomposite microspheres, suspension polymerization of vinyl acetate with organophilic MMT and heterogeneous saponification were conducted. A quaternary ammonium salt, cetyltrimethylammonium bromide, was mixed with the MMT in the monomer phase prior to the suspension polymerization. The rate of conversion decreased with an increase in MMT concentration. The incorporation of MMT into the PVAc was verified by FT-IR spectroscopy. Organic vinyl acetate monomers were intercalated into the interlayer regions of organophilic clay hosts and followed by suspension polymerization. Partially saponified PVA/MMT nanocomposite microspheres with a core/shell structure were successfully prepared by heterogeneous saponification.

Fabrication and Processing Method of Ophthalmic Hydrogel Tinted Lens Containing Indium Tin Oxide-Composited Materials

  • Lee, Min-Jae;Lee, Kyung-Mun;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.685-690
    • /
    • 2018
  • In this study, a multifunctional ophthalmic lens material with an electromagnetic shielding effect, high oxygen permeability, and high water content is tested, and its applicability is evaluated. Metal oxide nanoparticles are applied to the ophthalmic lens material for vision correction to shield harmful electromagnetic waves; the pyridine group is used to improve the antibacterial effect; and silicone substituted with urethane and acrylate is employed to increase the oxygen permeability and water content. In addition, multifunctional tinted ophthalmic lens materials are studied using lens materials with an excellent antibacterial effect (2,6-difluoropyridine, 2-fluoro-4-pyridinecarboxylic acid) and functional (UV protection, high wettability) lens materials (2,4-dihydroxy benzophenone, 2-hydroxy-4-(methacryloyloxy)benzophenone). To solve problems such as air bubbles generated during the polymerization process for the manufacturing and turbidity of the lens surface, polymerization conditions in which the defect rate is minimized are determined. The results show that the polymerization temperature and time are most appropriate when they are $110^{\circ}C$ and 40 minutes, respectively. The optimum injection amount of the polymerization solution is 350 ms. The turbid phenomenon that appears in lens processing is improved by 10 to 95 % according to the test time and conditions.

A Study on Resist Characteristics of Polystyrene by Plasma Polymerization (플라즈마 중합법에 의해 제작된 폴리스틸렌의 레지스트 특성 조사)

  • 박상근;박종관;이덕출;김종석;정해덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.138-140
    • /
    • 1994
  • Plasma polymerized thin film was prepared using an interelectrod inductively coupled gas-flow-type reactor. Styrene was chosen as the monomer to be used. This thin films were also delineated by the electron-beam apparatus with an acceleration voltage 30kV, and the pattern in the resist was developed with RIE 80 with argon gas mixture ratio, pressure and RF power. The effect of charge of discharge power on growth rate and etching rate of the thin films were studied. The molecular structure of thin films were investigated by FIR and then was discussed in relation to its quality as a resist. In the case of Plasma polymerization, thickness of resist could be controlled by discharge duration and power. Also etch rate is increased as to growing argon gas and RF power with RIE 80.

  • PDF

Preparation of Monodisperse Submicron-Sized Polymeric Particles by Emulsifier-Free Emulsion Polymerization (무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조)

  • Lee, Ki-Chang
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 2012
  • Narrowly dispersed poly(BMA-co-MMA) and PBMA latices (PSD : 1.002~1.008) were synthesized successfully by surfactant-free emulsion polymerization with 2,2' azobis(2-methyl-propionamidine) dihydrochloride (AIBA) and $K_2S_2O_8$ (KPS). The number average particle diameter and the number average molecule weight were found to be 160~494 nm and (1.25~7.55) ${\times}10^4$, respectively. The influences of BMA/MMA ratio, monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the polymerization rates and on the particle size and molecular weight were studied. The rate of polymerization increased with increasing MMA concentration in BMA/MMA weight ratio. The particle diameter as well as the polymer molecular weight could be controlled easily by controlling the BMA/MMA weight ratio, monomer concentration, AIBA and KPS concentration, and polymerization temperature.

Characterizations of Modified Silica Nanoparticles(II) ; Preparation and Application of Silica Nanoparticles as a Environmentally Filler

  • Min, Seong-Kee;Bae, Deok-Kwun;Park, Sang-Bo;Yoo, Seong-Il;Lee, Won-Ki;Park, Chan-Young;Seul, Soo-Duk
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.433-438
    • /
    • 2012
  • A chemical process involves polymerization within microspheres, whereas a physical process involves the dispersion of polymer in a nonsolvent. Nano-sized monodisperse microspheres are usually prepared by chemical processes such as water-based emulsions, seed suspension polymerization, nonaqueous dispersion polymerization, and precipitation polymerizations. Polymerization was performed in a four-necked, separate-type flask equipped with a stirrer, a condenser, a nitrogen inlet, and a rubber stopper for adding the initiator with a syringe. Nitrogen was bubbled through the mixture of reagents for 1 hr. before elevating the temperature. Functional silane (3-mercaptopropyl)trimethoxysilane (MPTMS) was used for the modification of silica nanoparticles and the self-assembled monolayers obtained were characterized by X-ray photoelectron spectroscopy (XPS), laser scattering system (LSS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental analysis (EA), and thermogravimetric analysis (TGA). In addition, polymer microspheres were polymerized by radical polymerization of ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) and acrylamide monomer via precipitation polymerization; then, their characteristics were investigated. From the elemental analysis results, it can be concluded that the conversion rate of acrylamide monomer was 93% and that polyacrylamide grafted to MPSN nanospheres via the radical precipitation polymerization with AAm in ethanol solvent. The microspheres were successfully polymerized by the 'graft from' method.

The effect of resin thickness on polymerization characteristics of silorane-based composite resin

  • Son, Sung-Ae;Roh, Hyoung-Mee;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.310-318
    • /
    • 2014
  • Objectives: This study examined the influence of the resin thickness on the polymerization of silorane- and methacrylate-based composites. Materials and Methods: One silorane-based (Filtek P90, 3M ESPE) and two methacrylate-based (Filtek Z250 and Z350, 3M ESPE) composite resins were used. The number of photons were detected using a photodiode detector at the different thicknesses (thickness, 1, 2 and 3 mm) specimens. The microhardness of the top and bottom surfaces was measured (n = 15) using a Vickers hardness with 200 gf load and 15 sec dwell time conditions. The degree of conversion (DC) of the specimens was determined using Fourier transform infrared spectroscopy (FTIR). Scratched powder of each top and bottom surface of the specimen dissolved in ethanol for transmission FTIR spectroscopy. The refractive index was measured using a Abbe-type refractometer. To measure the polymerization shrinkage, a linometer was used. The results were analyzed using two-way ANOVA and Tukey's test at p < 0.05 level. Results: The silorane-based resin composite showed the lowest filler content and light attenuation among the specimens. P90 showed the highest values in the DC and the lowest microhardness at all depth. In the polymerization shrinkage, P90 showed a significantly lower shrinkage than the rest two resin products (p < 0.05). P90 showed a significantly lower refractive index than the remaining two resin products (p < 0.05). Conclusions: DC, microhardness, polymerization rate and refractive index linearly decreased as specimen thickness linearly increased. P90 showed much less polymerization shrinkage compared to other specimens. P90, even though achieved the highest DC, showed the lowest microhardness and refractive index.