• Title/Summary/Keyword: polymerization rate

Search Result 360, Processing Time 0.024 seconds

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Hwang, Deok-Ryul;Hong, Jin-Ho;Lee, Jeong-Woo;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.329-336
    • /
    • 2008
  • Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

Photo-induced Living Cationic Polymerization of Isobutyl Vinyl Ether in the Presence of Various Combinations of Halides of Diphenyliodonium and Zinc Salts in Methylene Chloride

  • Kwon Soonhon;Chun Hyunjeong;Mah Soukil
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.253-258
    • /
    • 2004
  • Living nature of photoinduced cationic polymerization of isobutyl vinyl ether (IBVE) in the presence of various combinations of diphenyliodonium halide (DPIX), a photocationic initiator and zinc halide $(ZnX_2)$ in methylene chloride has been investigated. Attainment of $100\%$ conversion and a linear relationship between $\%$conversion and number average molar mass of the resulting polymer, strongly suggests the living nature of this system. Livingness of the polymerization system was observed irrespective to the type of halide anion of the initiator and zinc salts unless the reaction temperature is not higher than $-30^{\circ}C$. The rate of polymerization decreases in the order of iodide > bromide > chloride when halide salt of DPIX and $ZnX_2$ are used. It is postulated that the cationic initiation is started by the insertion of weakly basic monomer in to the activated C-X terminal of the monomer adduct which is a reaction product of monomer and HX, a photolytic product of DPIX, formed in situ during the photo-irradiation process. It was concluded that polymerization is initiated by the insertion of weakly basic monomer into activated C- X terminal of monomer adduct due to the pulling action of$ZnX_2$, which successively producing a new polarized C-X terminal for the propagation in cationic nature. This led us to a conclusion that the living nature of this cationic polymerization is ascribable to the polarized C-X growing terminal, which is stable enough to depress the processes of chain transfer or termination process.

Mesoporous Silica Catalysts Modified with Sulfonic Acid and Their Catalytic Activity on Ring Opening Polymerization of Octamethylcyclotetrasiloxane (술폰산으로 표면개질된 메조기공 실리카 촉매의 제조 및 Octamethylcyclotetrasiloxane 개환중합에서의 촉매 활성)

  • Lee, Yeonsong;Hwang, Ha Soo;Lee, Jiyoung;Lo, Nu Hoang Tien;Nguyen, Tien Giang;Lee, Donghyun;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.383-389
    • /
    • 2020
  • Mesoporous silica solid catalysts modified with sulfonic acid were prepared for cationic ring-opening polymerization of octamethylcyclotetrasiloxane (D4). Two sets of MCM-41 (1.7 and 2.8 nm) and SBA-15 (8.1 and 15.9 nm) with different pore sizes were used as catalyst supports. The surface of silica materials was modified with (3-mercaptopropyl)trimethoxysilane by silylation reaction and oxidized to sulfonic acid. The structures of the prepared catalysts were examined by X-ray diffraction and nitrogen adsorption-desorption. The pore size, specific surface area, and pore volume of the modified solid catalysts decreased slightly. In addition, the modification of the sulfonic acid on the silica surface was confirmed by using infrared spectroscopy and nuclear magnetic resonance spectroscopy. To observe the effect of the particle size on the catalytic activity, it was observed with a scanning electron microscope. The catalysts were used to synthesize PDMS through a ring-opening polymerization of D4, and the conversion and polymerization rate of the polymerization reaction depended on the pore size, specific surface area, particle size, and particle agglomeration of the catalysts. In order for the polymerization rate, the catalyst prepared with SBA-15 of 8.1 nm pore size had the fastest reaction rate and showed the best catalytic activity.

Efficient Bimodal Ring-opening Polymerization of ε-Caprolactone Catalyzed by Titanium Complexes with N-Alkoxy-β-ketoiminate Ligands

  • Cho, Min-Ho;Yoon, Jin-San;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2471-2476
    • /
    • 2007
  • A series of titanium complexes containing terdentate β-ketoiminate ligands were found to be efficient for the ring-opening polymerization of ε-caprolactone (ε-CL), producing poly(ε-caprolactone) (PCL) with bimodal distribution. Steric factors imposed by methyl substituents on the back bone of the alkoxy group affected significantly the polymerization rate and physical properties of the resulting PCL. Intra- and intermolecular transesterifications rather than disproportional rearrangements were responsible for the bimodal behavior and for the change in the molecular weight (Mw). Dilution with toluene reduced yield, and lowered polydispersity (PDI) and Mw of PCL, while the catalytic activities of the dimeric complex, [Ti(Oi-Pr)2(N-alkoxy-β- ketoiminate)]2 and Ti(Oi-Pr)4 were not sensitive to the added solvent. The dimeric complex showed living character, while other catalysts suffered from chain termination reactions.

Preparation and Physical Properties of Poly(Styrene/Acrylate) Core-Shell Latex Particles (Poly(Styrene/Acrylate) Core-Shell 라텍스 입자의 제조와 물성에 관한 연구)

  • Lee, Kyoung-Goo;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The core-shell latex particles were prepared by sequential emulsion polymerization of alkyl methacrylate and styrene(ST) by using an water-soluble initiator(APS) after preparing monomer pre-emulsion in the presence of an anionic surfactant(SDBS). In organic/organic core-shell polymerization, the pre-emulsion method, which minimized required quantity of sulfactant, has been used to increase the conversion rate and the stability of core-shell latex particles as well as to reduce the formation of secondary particle that cause problems of soap-free emulsion during shell polymerization. We used several methods to observe the core-shell structure. The core-shell structure was studied by measuring pH change during hydrolysis by NaOH, glass transition temperature($T_g$) by differential scanning calorimeter(DSC), morphology of latex by transmission electron microscope(TEM) and change of particle size and distribution by a particle analyzer.

Property Control in a Continuous MMA Polymerization Reactor using EKF based Nonlinear Model Predictive Controller

  • Ahn, Sung-Mo;Park, Myung-June;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • A mathematical model was developed for a continuous re-actor in which free radical polymerization of methyl methacrylate (MMA) occurred. Elementary reactions considered in this study were initiation, propagation, termination, and chain transfers to monomer and solvent. The reactor model took into account the density change of the reactor contents and the gel effect. A control system was designed for a continuous reactor using extended Kalman filter (EKF) based non-linear model predictive controller (NLMPC) to control the conversion and the weight average molecular weight of the polymer product. Control input variables were the jacket inlet temperature and the feed flow rate. For the purpose of validation of the control strategy, on-line digital control experiments were conducted with densitometer and viscometer for the measurement of the polymer properties. Despite the com-plex and nonlinear features of the polymerization reaction system, the EKF based NLMPC performed quite satisfactorily for the property control of the continuous polymerization reactor.

  • PDF

Dehydrogenative Polymerization of New Alkylsilanes Catalyzed by $Cp_2MCl_2$/Red-Al System (M=Ti, Hf): Synthesis of Poly(substituted 3-phenyl-1-silabutanes)

  • U, Hui Gwon;Han, Mi Gyeong;Jo, Eun Jeong;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.58-62
    • /
    • 1995
  • Substituted 3-phenyl-1-silabutanes such as 3-phenyl-1-silabutane (1), 3-(2,5-dimethylphenyl)-1-silabutane (2), 3-(p-chlorotolyl)-1-silabutane (3), and 3-naphthyl-1-silabutane (4) were prepared in 62-96% yield by reduction of the corresponding substituted 3-phenyl-1,1-dichloro-1-silabutanes with LiAlH4. The dehydrogenative polymerization of the monomer silanes was carried out with Cp2MCl2/Red-Al (M=Ti, Hf) catalyst system. The molecular weight of the polymers produced ranged from 700 to 1300 (vs polystyrene) with degree of polymerization (DP) of 5 through 16 and with polydispersity index (PDI)=1.1-2.1. The dehydrogenative polymerization of the monomer silanes with Cp2TiCl2/Red-Al catalyst system occurred at a faster rate and produced somewhat higher molecular weights of polysilane than that with Cp2HfCl2/Red-Al catalyst system.

Effects of immediate and delayed light activation on the polymerization shrinkage-strain of dual-cure resin cements (즉시 광중합과 지연 광중합이 이원 중합 레진시멘트의 중합 수축량에 미치는 영향)

  • Lee, So-Yeoun;Kim, Sung-Hun;Ha, Seung-Ryong;Choi, Yu-Sung;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.195-201
    • /
    • 2014
  • Purpose: This study was designed to compare the amount of polymerization shrinkage of dual-cure resin cements according to different polymerization modes and to determine the effect of light activation on the degree of polymerization. Materials and methods: Four kinds of dual-cure resin cements were investigated: Smartcem 2, Panavia F 2.0, Clearfil SA Luting and Zirconite. Each material was tested in three different polymerization modes: self-polymerization only, immediate light polymerization and 5 minutes-delayed light polymerization. The time-dependent polymerization shrinkage-strain was evaluated for 30 minutes by Bonded-disk method at $37^{\circ}C$. Five recordings of each material with three different modes were taken. Data were analyzed using one-way ANOVA and multiple comparison Scheffe′test (${\alpha}$=.05). Results: All materials, except Panavia F 2.0, exhibited the highest polymerization shrinkage-strain through delayed light-activated polymerization. No significant difference between light activation modes was found with Panavia F 2.0. All materials exhibited more than 90% of polymerization rate in the immediate or delayed light activated group within 10 minutes. Conclusion: As a clinical implication of this study, the application of delayed light activation mode to dual-cure resin cements is advantageous in terms of degree of polymerization.

Kinetic Studies on Homopolymerization of $\alpha$-Methylstyrene and Sequential Block Copolymerization of Isobutylene with $\alpha$-Methylstyrene by Living/Controlled Cationic Polymerization (리빙/조절 양이온중합에 의한 알파메틸스티렌 호모중합 및 이소부틸렌과의 블록공중합에 대한 반응속도론 연구)

  • Wu, Yibo;Guo, Wenli;Li, Shuxin;Gong, Huiqing
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.366-371
    • /
    • 2008
  • The controlled/living cationic polymerization of $\alpha$-methylstyrene (${\alpha}MeSt$) and sequential block copolymerization of isobutylene (IB) with ${\alpha}MeSt$ were achieved using 2-chloro-2,4,4-trimethylpentane (TMPCl)/titanium tetrachloride ($TiCl_4$)/titanium isopropoxide ($Ti(OiPr)_4$)/2,6-ditert-butylpyridine (DtBP) initiating system in $CH_3Cl$/hexane(50/50 v/v) solvent mixture at $-80^{\circ}C$. The polymerization rate decreased with increasing $[Ti(OiPr)_4]/[TiCl_4]$ ratio in the homopolymerization of ${\alpha}MeSt$. The effects of $[Ti(OiPr)_4]/[TiCl_4]$ ratios and $PIB^+$ molecular weight on the polymerization rate and blocking efficiency were also investigated. Well-defined poly(isobutylene-b-$\alpha$-methylstyrene)s were demonstrated by $^1H$-NMR and triple detection SEC; refractive index (RI), multiangle laser light scattering (MALLS) and ultraviolet (UV) detectors. Blocking efficiencies for the poly(isobutylene-b-$\alpha$-methylstyrene)s of almost 100% were obtained when ${\alpha}MeSt$ was induced by PIB's of $M_n\;{\geq}\;41000$ at $[Ti(OiPr)_4]/[TiCl_4]=1$. Differential scanning calorimetry (DSC) of the block copolymers showed two glass transition temperatures, thereby demonstrating microphase separation.