• Title/Summary/Keyword: polymerization

Search Result 3,126, Processing Time 0.031 seconds

Effects of immediate and delayed light activation on the polymerization shrinkage-strain of dual-cure resin cements (즉시 광중합과 지연 광중합이 이원 중합 레진시멘트의 중합 수축량에 미치는 영향)

  • Lee, So-Yeoun;Kim, Sung-Hun;Ha, Seung-Ryong;Choi, Yu-Sung;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.195-201
    • /
    • 2014
  • Purpose: This study was designed to compare the amount of polymerization shrinkage of dual-cure resin cements according to different polymerization modes and to determine the effect of light activation on the degree of polymerization. Materials and methods: Four kinds of dual-cure resin cements were investigated: Smartcem 2, Panavia F 2.0, Clearfil SA Luting and Zirconite. Each material was tested in three different polymerization modes: self-polymerization only, immediate light polymerization and 5 minutes-delayed light polymerization. The time-dependent polymerization shrinkage-strain was evaluated for 30 minutes by Bonded-disk method at $37^{\circ}C$. Five recordings of each material with three different modes were taken. Data were analyzed using one-way ANOVA and multiple comparison Scheffe′test (${\alpha}$=.05). Results: All materials, except Panavia F 2.0, exhibited the highest polymerization shrinkage-strain through delayed light-activated polymerization. No significant difference between light activation modes was found with Panavia F 2.0. All materials exhibited more than 90% of polymerization rate in the immediate or delayed light activated group within 10 minutes. Conclusion: As a clinical implication of this study, the application of delayed light activation mode to dual-cure resin cements is advantageous in terms of degree of polymerization.

EFFECT OF LIGHT INTENSITY ON THE POLYMERIZATION RATE OF COMPOSITE RESIN USING REAL-TIME MEASUREMENT OF VOLUMETRIC CHANCE (광조사 강도가 복합레진의 중합반응속도에 미치는 영향에 관한 실시간 체적측정법을 이용한 연구)

  • La, Sung-Ho;Lee, In-Bog;Kim, Chang-Keun;Cho, Byeong-Hoon;Lee, Kwang-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2002
  • Objectives : The aim of this study is to evaluate the effect of light intensity variation on the polymerization rate of composite resin using IB system (the experimental equipment designed by Dr. IB Lee) by which real-time volumetric change of composite can be measured. Methods : Three commercial composite resins [Z100(Z1), AeliteFil(AF), SureFil(SF)] were photopolymerized with Variable Intensity Polymerizer unit (Bisco, U.S.A.) under the variable light intensity (75/150/225/300/375/450mW$^2$) during 20 sec. Polymerization shrinkage of samples was detected continuously by IB system during 110 sec and the rate of polymerization shrinkage was obtained by its shrinkage data. Peak time(P.T.) showing the maximum rate of polymerization shrinkage was used to compare the polymerization rate. Results : Peak time decreased with increasing light intensity(p<0.05). Maximum rate of polymerization shrinkage increased with increasing light intensity(p<0.05). Statistical analysis revealed a significant positive correlation between peak time and inverse square root of the light intensity (AF:R=0.965, Zl:R=0.974, SF:R=0.927). Statistical analysis revealed a significant negative correlation between the maximum rate of polymerization shrinkage and peak time(AF:R=-0.933, Zl:R=-0.892, SF:R=-0.883), and a significant positive correlation between the maximum rate of polymerization shrinkage and square root of the light intensity (AF:R=0.988, Zl:R=0.974, SF:R=0.946). Discussion and Conclusions : The polymerization rate of composite resins used in this study was proportional to the square root of light intensity Maximum rate of polymerization shrinkage as well as peak time can be used to compare the polymerization rate. Real-time volume method using IB system can be a simple alternative method to obtain the polymerization rate of composite resins.

Surface Characterization of the Activated Carbon Fibers After Plasma Polymerization of Allylamine

  • Lu, Na;Tang, Shen;Ryu, Seung-Kon;Choi, Ho-Suk
    • Carbon letters
    • /
    • v.6 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Plasma polymerization of allylamine subsequently after plasma pre-treatment was conducted on the activated carbon fibers (ACFs) for the immobilization of amine groups in the surface of ACFs. The change of structural properties of ACFs with respect to different polymerization conditions was investigated through BET method. The change of surface morphologies of ACFs with respect to different plasma polymerization power was also studied through AFM. It was found that the structural properties such as specific surface area and micropore volume could be optimized under certain plasma deposition conditions. It was reckoned that treatment and deposition showed adverse effect on plasma polymerization, in which the former developed the micro-structures of the ACFs and the latter tended to block the micro pores. The Fourier transform infrared spectroscopy (FTIR) revealed that the poly(allylamine) was successfully immobilized on the surface of ACFs and the amount of the deposited polymer layer was related to the plasma polymerization power. SEM results showed that the plasma deposited polymer layer were small and homogenously distributed. The size and the distribution of particles deposited were closely related to the plasma polymerization power, too.

  • PDF

Anionic Polymerization of 2-Pyrrolidone by $SO_2/KOH$ Catalyst ($SO_2/KOH$ 촉매에 의한 2-Pyrrolidone의 음이온 중합에 관한 연구)

  • Huh, Dong-Sub;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.14 no.4
    • /
    • pp.231-252
    • /
    • 1979
  • Polymerization of 2-pyrrolidone was carried out through anionic mechanism using $SO_2/KOH$ as catalyst. The effects of KOH concentration, $SO_2/KOH$ mole ratio and temperature on polymerization were investigated. The conversion and viscosity of polymers were measured at various polymerization conditions. It was observed that as the concentration of KOH was increased, equilibrium conversion was also increased. It was, however, found that after the concentration of KOH was reached above 8 mole percent, the equilibrium conversion was decreased. The highest rate of polymerization and maximum conversion were obtained when $SO_2/KOH$ mole ratio was around 0.5. It was also found that the rate of polymerization and the equilibrium conversion were higher at $50^{\circ}C$. than at $30^{\circ}C$. but the viscosity of polymer solution at $50^{\circ}C$. was not so high as expected. The rate constant, $K_p$ of polymerization, was determined by least square method: the value of $K_p$ was observed as 16 liter/mole hour at $50^{\circ}C$. and 2.6 liter/mole hour at $30^{\circ}C$., respectively. The mechanism of polymerization was also discussed.

  • PDF

Preparation of High Molecular Weight Poly(methyl methacrylate) with High Yield by Room Temperature Suspension Polymerization of Methyl Methacrylate

  • Lyoo, Won-Seok;Noh, Seok-Kyun;Yeum, Jeong-Hyun;Kang, Gu-Chan;Ghim, Han-Do;Lee, Jinwon;Ji, Byung-Chul
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • To obtain high molecular weight (HMW) poly(methyl methacrylate) (PMMA) with high conversion, methyl methacrylate (MMA) was polymerized in suspension using a room temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior of MMA and the molecular parameters of PMMA were investigated. On the whole, the experimental results well corresponded to the theoretically predicted tendencies. These effects could be explained by a kinetic order of ADMVN concentration calculated by an initial rate method and an activation energy difference of polymerization obtained from the Arrhenius plot. Suspension polymerization at 25℃ by adopting ADMVN proved to be successful in obtaining PMMA of HMW (number-average degree of polymerization (P/sub n/): 30,900-36,100) and of high yield (ultimate conversion of MMA into PMMA: 83-93 %) with diminishing heat generated during polymerization. The P/sub n/ and lightness were higher and polydispersity index was lower with PMMA polymerized at lower temperatures.

A New Method to Measure the Conversion of Radiation Polymerization of Electrolyte Monomer Diallyldimethylammonium Chloride in Dilute Aqueous Solution

  • Zhang, Yalong;Yi, Min;Ren, Jing;Zhai, Maolin;Ha, Hongfei
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.146-151
    • /
    • 2003
  • The dependence of electrical conductivity on concentrations of diallyldimethylammonium chloride (DADMAC) monomer, linear poly(DADMAC) and their mixture monomer/poly(DADMAC) in dilute aqueous solution exhibits a linear relationship. It was possible to calculate conversion of DADMAC polymerization by measuring its electric conductivity. Although the electrical conductivity of the poly(DADMAC) solution decreased with increasing its molecular weight, in the process of UV or ionizing radiation polymerization the molecular weight of the polymers could be kept constant in the case of fixed temperature, UV-luminous intensity or dose rate. Based on the method mentioned above, the kinetics of UV induced polymerization of DADMAC in aqueous solution was studied; the overall activation energy of polymerization of DADMAC in the water phase was calculated to be 18.8 kJ mol$^{-1}$ . ${\gamma}$-Radiation-induced polymerization of DADMAC in aqueous solution as a function of absorbed dose was studied as well. The conversion of DADMAC increased quickly with dose before 30 kGy and then increased slowly. The experimental data of both UV- and ${\gamma}$-induced polymerization were verified to be reliable by inverted ultracentrifugation method.

THERMAL POLYMERIZATION OF 2-HYDROXYETHYL METHACRYLATE WITH PHENYLSILANS (PHENYLSILANS와 2-HYDROXYETHYL METHACRYLATE의 열중합)

  • Sung, A Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.87-90
    • /
    • 2000
  • Poly(HEMA)s have been used as the optometric material for the preparation of soft contact lens. The bulk thermal polymerization of 2-hydroxyethyl methacrylate (HEMA) with various hydrosilanes such as $phSiH_3$, $phMeSiH_2$, and $ph2SiH_2$ were performed to produce poly(HEMA)s containing phenylsilyl end moeity. It was found for thermal polymerization that while the polymerization yield and polymer molcular weights decreased as the relative phenylsilane concentration increases, the TGA residue yields and the relative intensities of SiH IR stretching bands increased as the relative hydrosilane concentration increases over HEMA. The polymerization yield, molecular weight, and TGA residue for the thermal polymerization were higher than those for the photo polymerization. Thus, the hydrosilanes significantly influence on the polymerization as both chain-initiation and chain-transfer agents.

  • PDF

A Kinetic Monte Carlo Simulation of Individual Site Type of Ethylene and α-Olefins Polymerization

  • Zarand, S.M. Ghafelebashi;Shahsavar, S.;Jozaghkar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.191-202
    • /
    • 2018
  • The aim of this work is to study Monte Carlo simulation of ethylene (co)polymerization over Ziegler-Natta catalyst as investigated by Chen et al. The results revealed that the Monte Carlo simulation was similar to sum square error (SSE) model to prediction of stage II and III of polymerization. In the case of activation stage (stage I) both model had slightly deviation from experimental results. The modeling results demonstrated that in homopolymerization, SSE was superior to predict polymerization rate in current stage while for copolymerization, Monte Carlo had preferable prediction. The Monte Carlo simulation approved the SSE results to determine role of each site in total polymerization rate and revealed that homopolymerization rate changed from site to site and order of center was different compared to copolymerization. The polymer yield was reduced by addition of hydrogen amount however there was no specific effect on uptake curve which was predicted by Monte Carlo simulation with good accuracy. In the case of copolymerization it was evolved that monomer chain length and monomer concentration influenced the rate of polymerization as rate of polymerization reduced from 1-hexene to 1-octene and increased when monomer concentration proliferate.

Novel thermal radical initiators based on a triazene moiety for radical polymerization

  • Kang, Seokwoo;Kim, Taemin;Kim, Beomjin;Jeong, Yeonkyu;Park, Young Il;Noh, Seung Man;Park, Jongwook
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, we designed and synthesized novel thermal radical initiators of BTAP (1-phenyl-3,3-dipropyltriazene), BTACP (1-(phenyldiazenyl)pyrrolidine), BTACH (1-(phenyldiazenyl)piperidine), and BTACH7 (1-(phenyldiazenyl)azepane) based on a triazene moiety to provide a thermal initiator for radical polymerization. The synthetic method is valuable due to the simplicity. In addition, the synthesized thermal initiator did not affect the color of the polymer. Among the four initiators, the polymerization time for the BTACH of the 6-membered ring decreased by 67%, as opposed to the polymerization time without initiator. Conversion after polymerization was over 92%. DSC experiments also showed that the initiator with hexagonal rings had the lowest peak polymerization temperature of $160^{\circ}C$. Our study suggests a promising new initiator system that is effective for radical polymerization.

Effect of Polymerization Condition on Atom Transfer Radical Copolymerization Behaviors of Styrene with Methyl Acrylate (스티렌과 메틸아크릴레이트의 원자 이동 라디칼 공중합에서 중합조건에 따른 중합 특성 연구)

  • Song, Seon-Ja;Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.676-680
    • /
    • 2011
  • Investigated was the effect of the crucial polymerization conditions such as methyl acrylate(MA) mole fraction in feed, polymerization temperature and time on Atom Radical Transfer Polymerization(ATRP) behavior of styrene and methyl acrylate(MA). As MA mole fraction in feed increased, molecular weight(MW) of the resulting copolymer increased. At polymerization time of 3 hrs the composition of MA in the resulting copolymer was shown to have a linear relationship with the mole fraction of MA in feed. MW was increased and the composition of MA in copolymer was decreased as the polymerization time increased, showing the characteristics of ATRP. MW was also increased as polymerization temperature increased, and the composition of MA in copolymer was shown to be increased drastically at polymerization temperature of $110^{\circ}C$.