• Title/Summary/Keyword: polymerization

Search Result 3,139, Processing Time 0.027 seconds

Anionic Polymerization of 2-Pyrrolidone by Toluene Diisocyanate / KOH Catalysis (Toluene Diisocyanate/KOH 촉매작용에 의한 2-Pyrrolidone의 음이온 중합)

  • Bal Jung;Ki Sung Kwon;Sam Kwon Choi;Mun Sam Ryoo
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.66-72
    • /
    • 1983
  • Anionic polymerization of 2-pyrrolidone was carried out by TDI (Toluene Diisocyanate)/KOH catalysis. The effects of TDI / KOH mole ratio, KOH concentration, temperature and time on polymerization were investigated. It was observed that the highest rate of polymerization and maximum conversion were obtained when TDI / KOH mole ratio was about 0.25. The maximum conversion and the highest viscosity were obtained when the concentration of KOH was 5 mole percent. It was also found that the rate of polymerization and inherent viscosity at $30^{\circ}C$ were higher than those at $50^{\circ}C$. The rate constant ($k_p$) of polymerization was determined by least square method; the values of kp obtained were $57.53{\ell}/mole{\cdot}min\;at\;30^{\circ}C$ and $52.36{\ell}/mole{\cdot}min\;at\;50^{\circ}C$, respectively.

  • PDF

Studies on the Preparation of Conducting Composite Film by a Vapor Phase in situ Polymerization (전도성 복합필름의 기상중합과 특성에 대한 연구)

  • Park, Jun-Seo;Park, Jang-Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.902-906
    • /
    • 1999
  • Electrically conducting composite films were prepared by a vapor phase in situ polymerization of pyrrole in the methyl cellulose film containing a copper(II) perchlorate. Methylcellulose had high affinity to pyrrole and was used as a matrix polymer. Conducting polypyrrole was embedded in the methylcellulose film forming a conducting network and the conductivity of the composite films ranged $10^{-1}$ to $10^{-7}S/cm$. The conductivities of conducting composite films were dependent on the nature of the matrix polymers, concentration of oxidant and polymerization time. In situ polymerization of pyrrole was observed in the matrix polymer and confirmed by UV-vis spectra. From the results of the thermogravimetric analysis, the chemical oxidative polymerization of pyrrole in the matrix polymers did not give any negative effects on the thermal stability of the composite films. Electron micrograph of composites indicated good penetration of PPy in the matrix polymer. DMA suggested a certain degree of incompatibility of the polypyrrole in the composites.

  • PDF

Preparation of Micron Size Poly(n-Butyl Acrylate) Latex Particle by Sequential Seeded Emulsion Polymerization (연속적 Seed 유화중합법에 의한 마이크론 크기의 Poly(n-Butyl Acrylate) 라텍스입자 제조)

  • Kim, Jee-Hoon;Suh, Soong-Hyuck;Nam, Wan-Woo;Kim, Kyung-Chan;Kang, Shin-Won;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.889-894
    • /
    • 1999
  • Preparation of micron size polymer particles which have desired morphology, size, and structure by emulsion polymerization is very difficult due to coagulation of latex particles and formation of second generation particles. But there are attractive merits such as preparation of structural and functional polymer particles in seeded emulsion polymerization. Seeded emulsion polymerization of n-butyl acrylate(BA) was carried out to investigate the effects of stirring rate, reaction temperature, concentration of initiator, emulsifier, and cross-linking agent on the particle size and size distribution. By the combination of suitable reaction conditions, we succeeded in preparing $0.14{\sim}3.67{\mu}m$ diameter of poly(n-butyl acrylate)(PBA) particles using sequential seeded emulsion polymerization.

  • PDF

Graft Copolymerization of MMN4-Vinylpyridine onto Cotton Fiber (면섬유(綿纖維)에의 MMA/4-Vinylpyridine의 공(共)그라프트 중합(重合))

  • Bae, Hyun-Sook;Kim, Sung-Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.347-358
    • /
    • 1993
  • Graft copolymerization of MMN4-VP onto cotton fiber using Ce(IV) salt as an initiator and triton X-100 as an emulsifier was performed under various polymerization conditions. In cograft polymerization, the polymeization behavior according to variation of 4-VP feed composition and the characteristics of MMA/4-VP graft polymer such as affinity for acid dye owing to cationization of cotton, antibacterial activity and thermal behavior were investigated. The results of this study were as follows : 1. While in copolymerization of MMA and 4-VP, 4-VP content in copolymer was more than that of monomer feed composition. 2. Increasing 4-VP content, graft yield was decreased, but graft efficiency was increased. In case of MMA/4-VP graft polymerization, the highest graft yield was obtained at higher CAN concentration than in MMA graft polymerization, the reason is that the behavior of 4-VP was disturbed by Ce(IV) sail 3. Elevation of temperature resulted in increase of graft yield and the apparent activation energy of MMA/4-VP graft polymerization was higher than that of MMA graft polymerization. 4. MMA/4-VP grafted cotton fiber showed affinity for acid dye, antibacterial activity and higher moisture regain than MMA grafted cotton fiber. MMA/4-VP grafted cotton fabric showed improvement of wrinkle recovery up to 40~50% graft yield and decreased thereafter. MMA/4-VP and MMA grafted cotton fabric did not showed significant difference in wrinkle recovery and stiffness.

  • PDF

Polymerization of Polystyrene Latex using Ultrasound Energy Effect (초음파 에너지를 이용한 Polystyrene Latex의 중합 특성)

  • Kim, Hyung Jin;Kim, Won II;Lee, Seung Bum;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.886-892
    • /
    • 1997
  • There are many methods to synthesize polystyrene latex. Emulsion polymerization technique is commonly used commercially, but it requires a new technology to replace a traditional polymerization method because of the disadvantage of chemical initiator for environmental pollution. Since free radicals can be produced by ultrasound energy effect, polystyrene latex was synthesized using ultrasound energy instead of chemical initiator. As the ultrasonic irradiation time was increased, average molecular weight was increased and polydispersity was decreased. The degree of polymerization was increased with the concentration of SDS and maximum degree of polymerization was shown at 2wt.% SDS concentration and the reaction temperature of $40^{\circ}C$. During the course of polymerization, molecular weight was repeatedly fluctuated because of occurrence of depolymerization. Narrow molecular weight distribution polystyrene latex having controlled molecular weight was synthesized by controlling ultrasonic irradiation time and the concentration of SDS.

  • PDF

Inverse Suspension Polymerization of Acrylamide (아크릴아미드의 역상 현탁중합)

  • Lee, Ki-Chang;Song, Bong-Keun;Lee, Dong-Joo
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.460-467
    • /
    • 2001
  • Inverse suspension polymerization of acrylamide (AM) in cyclohexane was carried out to study the effects of concentrations of sorbitan ester (Span) stabilizers and 2,2'-azobis (2-methyl propionamidine) dihydrochloride (AIBA) initiator, amount of monomer, shaking speed, and polymerization temperature on the particle size of the resulting poly (acrylamide) (PAM) beads and their molecular weights. It was found that the particle diameter. in general, decreased with increasing concentration of stabilizer, shaking speed, and water content in the aqueous phase, and with decreasing concentration of initiator and polymerization temperature. The average molecular weight of the resulting PAM beads was also found to increase with increasing concentrations of monomer and stabilizer, and also with decreasing concentration of initiator, polymerization temperature, and water content in the aqueous phase. In this study, PAM beads ranging 2 ~ 50 ${\mu}$m in diameter, with 8000000 ~ 12000000 in the weight average molecular weight were successfully prepared in almost 100% conversion.

  • PDF

A Study on the Preparation of Wood-Plastic Combinations(III) Preparation of Wood-Plastic Combinations by Thermal Curing Method

  • Kim, Jaerok;Lee, Kyung-Hee;Pyun, Hyung-Chick
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.301-305
    • /
    • 1972
  • The polymerization rates of monomer or monomer mixture impregnated with catalyst into domestic soft woods such as pinus densiflora, pinus rigida and poplus deltoides e. t. c. were measured. The results were compared with those obtained by radiation curing method and the following conclusions were derived ; (1) Pinus densiflora and pinus rigida are superior to the poplus deltoides, and methyl methacrylate(M. M. A. ) is more effective than other monomers as far as the polymerization rates are only taken into account. (2) The polymerization rate of vinyl acetate is generally slow. And the polymerization rate of the monomer is the slowest in case of being impregnated into poplus deltoides. However, the polymerization rate of the comonomer composed of vinylacetate and M. M. A. is the fastest among the other monomers or monomer mixtures in woods regardless of the curing method. (3) The general trend of polymerization of monomer in wood is similar to that of monomers themselves in both curing methods if the woods contain not much resin.

  • PDF

Scale-Up of Polymerization Process of Biodegradable Polymer Poly(lactic acid) Synthesis Using Direct Polycondensation Method

  • Pivsa-Art, Sommai;Niamlang, Sumonman;Pivsa-Art, Weraporn;Santipatee, Nutchapon;Wongborh, Tossamon;Pavasupree, Sorapong;Ishimoto, Kiyoaki;Ohara, Hitomi
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.100-109
    • /
    • 2015
  • Environmental problems from petroleum-based plastic wastes have been rapidly increasing in recent years. The alternative solution is focus on the development of environmental friendly plastic derived from renewable resource. Poly(lactic acid) (PLA) is a biodegradable polymer synthesized from biomass having potential to replace the petroleum-based non-degradable polymers utilizations. PLA can be synthesized by two methods: (1) ring-opening of lactide intermediate and (2) direct polycondensation of lactic acid processes. The latter process has advantages on high yields and high purity of polymer products, materials handling and ease of process treatments. The polymerization process of PLA synthesis has been widely studied in a laboratory scale. However, the mass scale production using direct polycondensation of lactic acid has not been reported. We have investigated the kinetics and scale-up process of direct polycondensation method to produce PLA in a pilot scale. The order of reaction is 2 and activation energy of lactic acid to lactic acid oligomers is 61.58 kJ/mol. The pre-polymer was further polymerized in a solid state polymerization (SSP) process. The synthesized PLA from both the laboratory and pilot scales show the comparable properties such as melting temperature and molecular weight. The appearance of synthesized PLA is yellow-white solid powder.

Preparation of Dinuclear, Constrained Geometry Zirconium Complexes with Polymethylene Bridges and an Investigation of Their Polymerization Behavior

  • Noh, Seok-Kyun;Jiang, Wen-Long
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.100-106
    • /
    • 2004
  • We have prepared the polymethylene-bridged, dinuciear, half-sandwich constrained geometry catalysts (CGC)[Zr(η$\^$5/:η$^1$-C$\_$9/H$\_$5/SiMe$_2$NCMe$_3$)]$_2$[(CH$_2$)$\_$n/][n=6(9), n=12(10)]by treating 2 equivalents of ZrCl$_4$with the corresponding tetralithium salts of the ligands in toluene. $^1$H and $\^$13/C NMR spectra of the synthesized complexes provide firm evidence for the anticipated dinuciear structure. In $^1$H NMR spectra, two singlets representing the methyl group protons bonded at the Si atom of the CGC are present at 0.88 and 0.64 ppm, which are considerably downfield positions relative to the shifts of 0.02 and 0.05 ppm of the corresponding ligands. To investigate the catalytic behavior of the prepared dinuciear catalysts, we conducted copolymerizations of ethylene and styrene in the presence of MMAO. The prime observation is that the two dinuclear CGCs 9 and 10 are not efficient for copo-lymerization, which definitely distinguishes them from the corresponding titanium-based dinuclear CGC. These species are active catalysts, however, for ethylene homopolymerization; the activity of catalyst 10, which contains a 12-methylene bridge, is larger than that of 9 (6-methylene bridge), which indicates that the presence of the longer bridge between the two active sites contributes more effectively to facilitate the polymerization activity of the dinuciear CGC. The activities increase as the polymerization temperature increases from 40 to 70$^{\circ}C$. On the other hand, the molecular weights of the polyethylenes are reduced when the polymerization temperature is increased. We observe that dinuciear metallocenes having different-length bridges give different polymerization results, which reconfirms the significant role that the nature of the bridging ligand has in controlling the polymerization properties of dinuclear catalysts.

Thermal Hazards of Polystyrene Polymerization Process by Bulk Polymerization (벌크 중합법에 의한 폴리스티렌 중합공정의 열적위험성)

  • Han, In-Soo;Lee, Jung-Suk;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • The aim of this study is to assess thermal hazards of polystyrene polymerization process by bulk polymerization with accelerating rate calorimeter(ARC) and Multimax reactor system(MM). From this study, we found out that the polymerization process should be operated at reaction temperature of $120^{\circ}C{\sim}130^{\circ}C$. At reaction temperature over $130^{\circ}C$, there was a runaway reaction hazard due to the temperature control failure following a viscosity increase of reaction products. With a cooling failure of a reactor in the early stage of process operation at the reaction temperature ($120^{\circ}C{\sim}130^{\circ}C$), there was a high thermal hazard of burst of a reactor's rupture disk or explosion of a reactor caused by the rapid rise of temperature and pressure to $340^{\circ}C$, 5.3 bar respectively within 30 - 50 minutes.