• 제목/요약/키워드: polymeric membrane

검색결과 315건 처리시간 0.021초

PAC 전처리 시 수소이온 농도에 따라 발생 가능한 알루미늄 종에 의한 나노여과막 성능 연구 (Effects of polymeric Al and hydrolysis products of PAC at different pH on performance of nanofiltration with PAC coagulation pretreatment)

  • 최양훈;권지향
    • 상하수도학회지
    • /
    • 제24권1호
    • /
    • pp.15-24
    • /
    • 2010
  • Coagulation can be used for pretreatment of NF membrane filtration. Foulants such as organic matter and particulate can be removed effectively with the process while high flux recovery is maintained. Recently various types of polyaluminium coagulants including polyaluminium chloride(PAC) are commercially available for water treatment. This study examines effects of polymeric Al and hydrolysis products of PAC on nanofiltration membrane performance. Dominant hydrolysis products were polymeric Al, $Al(OH)_3$, and ${Al(OH)_4}^{-1}$ at acidic, neutral, and alkaline pH conditions, respectively. Under acidic pH condition, flux decline was increased with increasing PAC concentrations, possibly due to polymeric Al adsorption on membrane pore and/or surfaces. For neutral and alkaline pH conditions, little flux decline was observed with increasing PAC concentrations except the highest ${Al(OH)_4}^{-1}$ concentration, with which rapid flux decline was shown. Removal of ionic matters was also varied with pH conditions in this study. Especially, conductivity removal was substantially low and $Ca^{2+}$ concentration in the permeate was quite high at neutral pH condition.

Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration

  • Hao, L.;Liss, S.N.;Liao, B.Q.
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.337-353
    • /
    • 2017
  • Membrane fouling at different solids retention times (SRT) (7, 12 and 20 days) was studied under well-controlled conditions in a laboratory-scale aerobic submerged membrane bioreactor under constant biomass concentration using a synthetic high strength wastewater. An increase in SRT was found to improve membrane performance and this correlated to changes in the total production of bound extracellular polymeric substances (EPS), and the composition and properties of bound EPS using X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR) and floc sizes. A larger amount of total bound EPS was found at the lowest SRT (7 days) tested but the ratio of proteins (PN) to carbohydrates (CH) in bound EPS increased with an increase in SRT. Similarly, the quantity of soluble microbial products (SMP) decreased with an increase in SRT and the SMP PN/CH ratio increased with an increase in SRT. SMP concentrations positively correlated to the percentage of membrane pore blocking resistance. The quantity of total bound EPS and total SMP positively corresponded to the membrane fouling rate, while the PN/CH ratio in the bound EPS and SMP negatively correlated to the membrane fouling rate. The results show that both the quantity and composition of bound EPS and SMP and floc sizes are important in controlling membrane fouling.

항에이즈 약물의 경피흡수에 미치는 합성고분자 멤브레인의 영향 (The Effect of Synthetic Polymer Membranes on the Skin Permeation of Anti-AIDS Drugs)

  • 이경진;김대덕
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 1998
  • The effect of synthetic polymer membranes on the permeation rate of dideoxynucleoside-type anti-HIV drugs through hairless rat skin was studied using ethylene/vinyl acetate copolymer (EVA) and ethylene/methyl acrylate copolymer (EMA) membranes fabricated by solvent casting method. In vitro skin permeation kinetics study of DDC (2',3'-dideoxythymidine), DDI (2',3'-dideoxyinosine) and AZT (3'-azido-3'-deoxythymidine) across the (membrane/skin) composite was conducted for 24 hours at $37^{\circ}C$ using the Valia-Chien skin permeation system. The results showed that skin permeation rate of each drug across the (skin/membrane) composite was mainly dependent on the property of the membrane. Proper selection of the polymeric membrane which resembles hydrophilicity/lipophilicity of the delivering drug was important in controlling the skin permeation rate.

  • PDF

Poly(acrylic acid-co-maleic acid)로 가교된 Poly(vinyl alcohol)막을 이용한 에탄을 수용액의 투과증발분리 특성 (Pwevaporation Separation of Aqueous Ethanol Solution Through Poly(vinyl alcohol) Membranes Crosslinked Poly(acrylic acid-co-maleic acid))

  • 남상용;성경수;천세원;임지원
    • 멤브레인
    • /
    • 제12권4호
    • /
    • pp.255-261
    • /
    • 2002
  • 폴리비닐알콜을 고분자계 가교제인 폴리아크릴산-말레산 공중합체를 이용하여 가교제의 농도를 변화시키면서 가교하여 막을 제조하였다. 제조한 막은 FT-IR과 수팽윤도 측정을 통하여 가교반응을 확인하였으며, 가교제 농도 증가에 따라서 수팽윤도가 감소하는 경향을 나타내었다. 고분자가교제인 폴리아크릴산-말레산 공중합체로 가교된 폴리비닐알콜 막은 글루탈알데히드로 가교된 폴리비닐알콜이나 변성 폴리비닐알콜 막에 비해서 수팽윤도가 감소하였다. 이는 고분자가교제에 의한 화학적가교와 더불어 물리적인 가교효과가 증가하여 막의 팽윤을 억제하기 때문으로 사료된다. 에탄올수용액에 대한 투과증발실험 결과 가교제의 농도가 증가할수록 선택도는 증가하며, 투과유량은 감소하는 경향을 나타내었으며, 공급액 중의 물의 농도가 증가할수록 선택도는 약간 감소하나 투과유량은 급격히 증가하고, 공급액 중의 물의 농도가 증가하여도 가소화현상이 나타나지 않는 것을 관찰하였다. 이는 고분자가교제에 의한 팽윤억제 메카니즘이 작용하기 때문으로 사료된다.

침지형 분리막을 이용한 오수고도처리 공정의 막오염 원인물질 및 제어에 관한 연구 (A Study on Membrane Fouling Contaminants and Control in Enhanced Sewage Treatment by Submerged Membrane Bioreactor)

  • 박철휘;윤재곤
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.619-627
    • /
    • 2004
  • Purposes of this study were to examine closely the extracellular polymeric substances (EPS) which was a membrane fouling contaminant, to control detected EPS by powdered activated carbon (PAC) dosage etc. and to evaluate the possibility of practical reuse facility. With high removal efficiency of general pollutants, when the PAC is added to MBR, improvement of removal efficiency of $COD_{cr}$, and color was expected and treated wastewater can be reused. It was judged that the correlation between EPS and membrane fouling was very high. Carbohydrate and DNA in the EPS were judged to be cause of membrane fouling. If EPS could be controled, not only membrane fouling would be decreased but also operation time would be extended. In experiment of powdered activated carbon (PAC), characteristics of the best PAC for membrane fouling control were the particle size of $7{\mu}m$, lodine Number of 1,050, surface area of peat of $1,150m^2/g$. In lab test, operation time of MBR by PAC dosage of 200mg/gVSS was longer than one of MBR by without PAC dosage. Because EPS, especially carbohydrate and DNA, was controled successfully by PAC, membrane fouling in MBR could be decreased.

Effects of EPS on membrane fouling in a hybrid membrane bioreactor for municipal wastewater treatment

  • Zhang, Aining;Liu, Zhe;Chen, Yiping;Kuschk, Peter;Liu, Yongjun
    • Membrane and Water Treatment
    • /
    • 제5권1호
    • /
    • pp.1-14
    • /
    • 2014
  • A pilot-scale hybrid membrane bioreactor (HMBR) for real municipal wastewater treatment was developed by adding biofilm carriers into a conventional membrane bioreactor, distribution and dynamic changes of the extracellular polymeric substances (EPS) and their roles in membrane fouling were investigated. The results showed that the concentrations of loosely bond EPS (LB-EPS) and tightly bond EPS (TB-EPS) in activated sludge, carrier biofilm and sludge cake layer have been increased significantly with the running time of HMBR, during operation of the HMBR, EPS demonstrated positive correlations with membrane fouling. Compared to TB-EPS, LB-EPS showed more significant correlations with sludge physical properties and specific resistance to filtration (SRF) in HMBR, and thus demonstrated that LP-EPS have a stronger potential of fouling than TB-EPS. It was also found that a lower organic loading in HMBR could result a significant increase in EPS concentration, which would in turn influence membrane fouling in HMBR. This critical investigation would contribute towards a better understanding of the behavior, composition and fouling potential of EPS in HMBR operation.