• Title/Summary/Keyword: polymeric membrane

Search Result 315, Processing Time 0.104 seconds

Mechanisms of Gas Permeation through Microporous Membranes - A Review (미세 다공막을 통한 기체 투과기구)

  • 황선탁
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • A review is presented for various gas transport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the interaction between gas molecules and the pore walls. For microporous membranes whose pores are small and the internal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, then the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Mechanisms of gas permeation through microporous membranes - A review

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.1-13
    • /
    • 1995
  • A review is presented for various gas tranport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the inateraction between gas molecules and the pore walls. For microporous membranes whose pores are small and the intenal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, them the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Synthesis and Permeation Characteristics of Zeolite Membranes

  • Kita, Hidetoshi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.5-8
    • /
    • 1997
  • Introduction : Membranes made from inorganic materials are generally superior to organo-polymeric materials in thermal and mechanical stability, and chemical resistance. Among inorganic materials zeolite is a promising candidate for a high performance membrane because of the unique characteristics of zeolite crystals such as molecular sieving, ion exchange, selective adsorption and catalysis. Although there are many recent reportsl on the preparation of zeolitc membranes and the gas permeation through the membranes, only a limited number of publications deal with pervaporation studies. Recently, we have reported a high pervaporation performance of NaA zeolite membrane for the separation of water/organic liquid mixtures. and of NaY zeolite menlbrane for the separation of methanol/MTBE. Here, preparation of zeolite (LTA, ZSM-5 and FAU) membranes and their permeation properties are discussed.

  • PDF

Synthesis and Properties of New Type of Proton Conducting Polymer Membrane for High Temperature Fuel Cells (고온 연료전지용 새로운 형태의 고분자 전해질막의 합성과 특성연구)

  • Lee, Joong-Hee;Sambhu, Bhadra;Kim, Nam-Hoon;Lee, Hong-Ki;Kim, Hong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.166-169
    • /
    • 2009
  • Poly(benzimidazole-co-aniline) (PBIANI), a self-crosslinked, net-structured, proton conducting polymer has been synthesized for the membrane of high temperature proton exchange membrane fuel cells (HT-PEMFC) with improved proton conductivity and mechanical strength. The stress at break (26$\pm$3MPa)and proton conductivity (167 mS cm-1)of the phosphoric acid doped PBIANI (DPBIANI)membrane is much higher than those of other doped polybenzimidazole(PBI) type membranes.

  • PDF

Liquid-Liquid Phase Separation in a Quaternary System of PolysuIfone/Polyethersulfone/N-Methyl-2-pyrrolidone/water (사성분계 시스템의 액액상분리에 관한 연구 (폴리술폰/폴리에테르술폰/NMP/물))

  • 백기전;김제영;이환광;김성철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.22-24
    • /
    • 1998
  • 1. INTRODUCTION : The phase inversion method is widely used to prepare a variety of polymeric membranes ranging from micro-filtration to gas separation. The final morphology obtained by immersion precipitation strongly reflects the thermodynamics and kinetics of the system involved. The equilibrium thermodynamics of the ternary system of polymer/solvent/ nonsolvent is still very important to understand and predict membrane structure. Polysulfone (PSf) and polyethersulfone (PES) are important polymers as membrane materials due to the chemical resistance, mechanical strength, thermal stability and transport properies. There are several reports on the experimental phase diagrams in ternary mixtures of PSf/solvent/nonsolvent, and PES/solvent/nonsolvent. It would be interesting to investigate the solution thermodynamics containing these two polymers since PES is slightly less hyclrophobic than PSf.

  • PDF

Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study

  • Hazrati, Hossein;Karimi, Naser;Jafarzadeh, Yoones
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this study, the performance and antifouling properties of polysulfone (PSf) and polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) membranes in a membrane bioreactor (MBR) were investigated. The membranes were prepared via phase inversion method, and then characterized by a set of analyses including contact angle, porosity and water flux and applied in a lab-scale MBR system. Soluble microbial product (SMP), extracellular polymeric substance (EPS), FTIR, gel permission chromatography (GPC) and particle size distribution (PSD) analyses were also carried out for MBR system. The results showed that the MBR with PSf membrane had higher hydrophobic organic compounds which resulted in formation of larger flocs in MBR. However, in this MBR had high compressibility coefficient of cake layer was higher (n=0.91) compared to MBR with PVDF/PVP membrane (n=0.8); hence, the fouling was more profound. GPC analysis revealed that compounds with molecular weight lower than 2 kDa are more formed on PSf membrane more than PVDF/PVP membrane. The results of FTIR analysis confirmed the presence of polysaccharide and protein compounds on the cake layer of both membranes which was in good agreement with EPS analysis. In addition, the results showed that their concentration was higher for the cake on PSf membrane.

Behavior and Influence of EPS on Membrane Fouling by Changing of HRT in MBR with Gravitational Filtration (중력여과 방식의 MBR을 이용한 하수처리에서 HRT 변화에 따른 EPS의 거동과 막오염에 대한 영향)

  • Kim, SI-Won;Kwak, Sung-Jin;Lee, Eui-Sin;Hong, Seung-Mo;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.865-870
    • /
    • 2006
  • The behavior and influence of EPS on membrane fouling by changing of hydraulic retention time was investigated, using lab. scale submerged membrane bio-reactor, which was operated with gravitational filtration and fed supernatant of primary sedimentation in waste water treatment plant as influent. The membrane was adopted micro-filter of polyethylene hollow fiber. EPS was analysed as polysaccharides and protein especially, into soluble and bound EPS separately. The concentration of soluble EPS was increased at short HRT, then membrane fouling was rapidly progressed and flux was depressed. The most of EPS clogged membrane pore were polysaccharides, while protein was important parameter affected on membrane fouling because of it's more accumulating in the more term operating.

Research Trend of Membrane Technology for Separation of Carbon Dioxide from Flue Gas (온실기체 분리회수를 위한 막분리기술 연구 동향)

  • 김정훈;임지원;이수복
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.121-142
    • /
    • 2002
  • The $CO_2$ emission is the largest contribute for the green house effect. Among the existing chemical separation processes, the membrane separation technology is(/will be) the most potential process for $CO_2$, separation from flue gas. Based on the solution-diffusion theory and physical properties of carbon dioxide/nitrogen and the permeation data in the literature, the relationships between physico-chemical structures of polymeric membrane materials and the perm-selectivities for $CO_2$/$N_2$ gases were described in detail. The progress of membrane module and process development was introduced briefly. Finally, the worldwide research activity including South Korea's for carbon dioxide separation by membrane technology were introduced through the survey of papers and technical reports published.

Development Trend of Membrane Filter Using Ceramic Fibers (세라믹 섬유를 이용한 멤브레인 필터의 연구개발 동향)

  • Kim, Deuk Ju;Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • Ceramic materials have attracted increasing attention in the last 10 years because of their high thermal stability and high permeation property compared with polymeric nanofiber membranes. Recently, novel nanofiber ceramic membranes with high porosity and flux have been fabricated from metal oxide nanofibers. To improve the performance of ceramic membranes and reduce their costs, a new ceramic membrane with a selective separation layer made of nanofibers was fabricated by electrospinning process and modification process for filtration system. This review summarizes the research trends for the development of ceramic nanofiber membrane over the past few years.

Studies on the Removal of Volatile Organic Compounds in Wastewater using PTMSP/PDMS-PEI Composite Membrane by Pervaporation (PTMSP/PDMS-PEI 복합막을 이용한 폐수중의 휘발성 유기화합물 제거에 관한 연구)

  • Kweon, Chang-Oh;Paik, Gwi-Chan;Chun, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3532-3540
    • /
    • 2011
  • In order to improve flux of PTMSP/PDMS dense membrane, PTMSP/PDMS-PEI composite membrane with PEI support was prepared by phase inversion process and dip coating. These membranes were evaluated in terms of the removal of volatile organic compounds such as PCE, TCE, chloroform, 1,1,1-trichloroethane from wastewater by pervaporation. The selectivity and flux of PTMSP/PDMS dense membranes was in the range of 216.2 to 2394.4 and 244.3 to 428.2g/m2h, respectively. And pervaporation property of PTMSP/PDMS-PEI composite membrane was in the range of 215.5 to 2404.2 and 390.4 to 728.6g/m2h, respectively. PTMSP/PDMS-PEI composite membrane has remarkably greater flux than dense membranes with similar selectivity. It was possible for polymeric membranes used in this study to remove PCE selectively which is dissolved small quantity in water among other separable solutes. PTMSP/PDMS-PEI composite membrane showed the best performances among the silicone polymeric membranes, and has better durability and mechanical strength than dense membranes. PTMSP/PDMS-PEI composite membrane should be a useful candidate for the removal of volatile organic compounds dissolved in wastewater.