• Title/Summary/Keyword: polymeric foam

Search Result 46, Processing Time 0.026 seconds

Comparative Study on Mechanical Behavior after Deformation Recovery of Polymeric Foam for Ships and Offshore Structures (폴리머 폼의 선박 및 해양구조물 적용을 위한 변형 회복 후 기계적 거동 특성 분석)

  • Kim, Seul-Kee;Kim, Jong-Hwan;Lee, Jeong-Ho;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.195-200
    • /
    • 2016
  • In this study, compression tests for the polyisocyanurate foam which is recognized as the insulation material for the storage tank of the liquefied natural gas (LNG) were carried out for investigation of the material characteristic of mechanical behavior. Deformation recovery ratio according to the various initial deformation levels were estimated and the mechanical behavior of foams that are experienced compressive deformation was also obtained experimentally. The test results were analyzed based on the conditions of initially applied strain level and engineering strain rate.

Fabrication and Characterization of Porous TCP coated Al2O3 Scaffold by Polymeric Sponge Method

  • Sarkar, Swapan Kumar;Kim, Young-Hee;Kim, Min-Sung;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.579-583
    • /
    • 2008
  • A porous $Al_2O_3$, scaffold coated with tricalcium phosphate(TCP) was fabricated by replica method using polyurethane(PU) foam as a fugitive material. Successive coatings of $Al_2O_3$ and hydroxyapatite(HAp) were applied via dip coating onto polyurethane foam, which has a slender and well interconnected network. A porous structure was obtained after sequentially burning out the foam and then sintering at $1500^{\circ}C$. The HAp phase was changed to TCP phase at high temperature. The scaffold showed excellent interconnected porosity with pore sizes ranging from $300{\sim}700{\mu}m$ in diameter. The inherent well interconnected structural feature of PU foam remained intact in the fabricated porous scaffold, where the PU foam material was entirely replaced by $Al_2O_3$ and TCP through a consecutive layering process. Thickness of the $Al_2O_3$ base and the TCP coating was about $7{\sim}10{\mu}m$ each. The TCP coating was homogeneously dispersed on the surface of the $Al_2O_3$ scaffold.

Study on Biodegradable Polyurethane Foam for Non-lethal Weapon (비 살상 무기 개발을 위한 생분해성 발포 폴리우레탄에 대한 연구)

  • Lee, Hyang Moo;Kim, Young Hyun;Kim, Kyung Won;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Foam-type biodegradable polyurethane adhesives were developed as a non-lethal weapon against illegal fishing boats. The adhesives were prepared from a hardener of polymeric methylene diphenyl diisocyanate (MDI) and a base composed of polyester and/or polyether polyols. In order to accelerate biodegradability, starch, dextrin, and amylase were added into the base, and which present about 34% degradability within 4 weeks confirmed by OECD 301C method. For proper mixing and corresponding prompt foam reaction, viscosities of hardener and base compositions were investigated in the temperature ranges from 0 to $50^{\circ}C$. For fast completion of the foam forming and corresponding adhesion, rising time was recorded in the same temperature range, and the rising time of the adhesive was varied within around 1 minute. T-peel adhesion tests with cotton fabrics were performed which showed 20.78 N/cm and 11.95 N/cm as the maximum and the average values, respectively.

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

INTUMESCENT INORGANIC AND ORGANIC COATINGS

  • Kodolov, V.I.;Mikhalkina, T.M.;Shuklin, S.G.;Bystrov, S.G.;Larionov, K.I.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.130-137
    • /
    • 1997
  • Intumescent inorganic and organic coatings which dintr one from the other by the type of gas formers and the mechanisms of foam formation have been obtained and investigated. Inorganic intumescent coatings are the compositions based on water glass and mineral additives with different dispersity. Mineral additives contain adsorbed and absorbed water and carbonates which are destructed with the carbon dioxide and water evolution during the flame action on coating. The decreasing of mineral additives particle sizes under the mechanical milling with the fraction precipitation promotes the foam coke formation with less defects. Here the main structure of comparing compositions does not change. In organic coatings based on epoxy-polymers the polyammonium phosphate additive is used. It is the cabonization catalyst and the foam agent. The polyammonium phosphate of various dispersity employed is uniformly distributed on the polymeric matrix. The decreasing of the particle sizes leads to the increasing of the fire resistant properties of the intumescent coa-ting. The fire resistant analysis of the coating during more than an hour: the coating back side the temperature on plastic or wooden materials does not exceed 423K, and on metal-573K.

  • PDF

Effects of Previous History on Diffusivity and Solubility of Gas in the Polymer Matrix (이력이 고분자 재료 안으로의 확산 및 용해에 미치는 영향)

  • 윤재동;차성운;최광용;조현종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.108-113
    • /
    • 2000
  • An important process for making a new class of polymeric material is called microcellular plastics invented at the Massachusetts Institute of Technology. Many researches for microcellular plastics have been done in various ways and fields. But a research for the polymer which has previous history has not been tried yet. In this paper, weight gain of $CO_2$ was measured in a polymer matrix which had previous history and no history. In each case, experimental data for solubility and diffusivity was shown. A model for $CO_2$ solution process in molecular range was made. The conclusion of this paper is that the previous history has an effect on diffusivity but not solubility and the previous history made by $CO_2$ in supercritical state makes diffusivity of $CO_2$ larger.

  • PDF

Study on Reaction Behavior of Rigid Polyurethane Foam with Various Types and Contents of Gelling Catalysts (젤화 촉매의 종류 및 함량에 따른 경질 폴리우레탄 폼의 반응거동에 관한 연구)

  • Eom, Se Yeon;Lee, Hyeong Il;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • The reaction behavior of rigid polyurethane foams were studied on the effects of gelling catalysts of amine type, such as; dimethylcyclohexyl amine (DMCHA) and of potassium type, such as; potassium octoate (PO). Rigid polyurethane foams were provided with polymeric 4,4'-diphenylmethane diisocyanate, polyester polyol, silicone surfactant, blowing agent and a few gelling catalysts. As the contents of catalyst, DMCHA increased from 0 to 2.0 g, the reaction time decreased from ca. 330 to ca. 35 sec and due to the exothermic reaction, the maximum temperature increased from ca. 217 to ca. $234^{\circ}C$, respectively. As the contents of PO increased from 0 to 2.5 g, the reaction time decreased from ca. 79 to ca. 38 sec and the maximum temperature increased from ca. 182 to ca. $271^{\circ}C$, respectively. The kinetic parameters were calculated and the conversions were based on the temperature rising method of adiabatic process. As the content of DMCHA increased, the rate constant $k_0$ increased. But in the case of PO catalyst, $k_0$ did hardly depend upon its amount, and showed us similar reaction rate constants.

Trend on Development of Polymeric Organosilicone Surfactants (고분자 유기실리콘 계면활성제의 개발 동향)

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.546-567
    • /
    • 2015
  • Silicone-based surfactants consist of a hydrophobic organosilicone group coupled to one or more hydrophilic polar groups, while the hydrophobic groups of hydrocarbon surfactants are hydrocarbons. Silicone surfactants have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability. A wide range of silicone surfactant structures are required to provide the functional diversity for reflecting the necessities in the various applications. This review covers the basic properties and the synthetic schemes of polydimethylsiloxane and reactive polysiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive polysiloxanes to hydrophilic groups, and the synthetic schemes of the main polysiloxane surfactants including polyether-, ionic-, carbohydrate-type surfactants.

Properties of Rigid Polyurethane Foams Synthesized from 4,4 (4,4'-Diphenylmethane Diisocyanate와 Polyether Polyol로부터 제조된 경질 폴리우레탄 폼의 물성)

  • 서원진;정현철;김연희;김우년;최건형
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 2002
  • Rigid polyurethane foams (PUFs) were prepared from polymeric 4.4'-diphenyl-methane diisocyanate (PMDI), polyether polyol, 1,4-butane diol, silicone surfactant, and distilled water. The density of the PUF was decreased from 173.7 to 41.7 kg/㎥ with an increase in distilled water from 0.5 to 3.0 php (parts per hundred polyol by weight), respectively, at the 0 php butane diol. The cell size of the PUF increased from 115 to 258 $mu extrm{m}$ with an increase in the amount of distilled water from 0.5 to 3.0 php, respectively, at the 10 php butane diol. It was found that the compressive strength of the PUF increased with the content of distilled water, at the same density. Out of the study for the surfactant effect on the properties of the PUF, it was observed that the cell site of the PUF decreased from 360 to 146 $mu extrm{m}$ with an increase in the amount of the surfactant from 0 to 0.33 php, respectively, but the tell size did not change significantly when the amount of the surfactant exceeded 0.33 php.

Physical Properties and Foaming Characteristics of Poly(butylene adipate-co-succi nate)/Thermoplastic Starch Blends (Poly(butylene adipate-co-succinate)/Thermoplastic Starch 블렌드의 물성과 발포특성)

  • Kim, Sang-Woo;Park, Joon-Hyun;Kim, Dae-Jin;Lim, Hak-Sang;Seo, Kwan-Ho
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.557-564
    • /
    • 2005
  • Thermoplastic starch (TPS) was manufactured and blended with poly(butylene adipate-co-succinate) (PBAS), which is one of the most popular biodegradable aliphatic polyesters. The effects of the TPS contents on the mechanical properties, thermal characteristics, and biodegradability of PBAS/TPS blends were investigated. The foaming characteristics of those were also studied. With small amount of TPS, mechanical properties of the blends were largely deteriorated and the variations of them decreased with more addition of TPS. In addition, TPS decreased crystallinity and thermal decomposition temperature of PBAS. The PBAS/TPS foam having maximum blowing ratio was obtained with 20 Phr of TPS, and their blowing ratio decreased with the further increase of TPS.