• Title/Summary/Keyword: polymer wrapping

Search Result 51, Processing Time 0.027 seconds

Effect of Polymer Wrapping on the Properties of ABS/MWNT Nanocomposites (고분자 래핑(wrapping)에 의한 전처리가 ABS/MWNT 나노복합체의 물성에 미치는 영향)

  • Kim, Jung-Hwan;Min, Byung-Gil
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2010
  • ABS/MWNT nanocomposites were prepared by using MWNT wrapped with SAN through melt compounding. Effect of wrapping of MWNT by SAN on the morphology, mechanical and electrical properties of ABS/MWNT were analyzed. It was found that SAN could wrap MWNT effectively indicated by the increased thickness after wrapping, which is presumably due to helical structure of polyacrylonitrile component in a block copolymer of SAN. MWNT was observed to be dispersed more evenly in ABS matrix by SAN wrapping, which resulted in improved tensile properties of the composites. On the other hand, there was little effect on the impact strength and electrical properties of ABS having inherently high impact strength.

Effect of Wrapping Treatment on the Dispersion of MWNT in CNT/ABS/SAN Composites (CNT/ABS/SAN계의 분산성에 미치는 MWNT Wrapping 전처리 효과)

  • Kim, Sung Tae;Park, Hae Youn;No, Tae Kyeong;Kang, Dong Gug;Jeon, Il Ryeon;Seo, Kwan Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.372-376
    • /
    • 2012
  • Carbon nanotubes (CNT) are considered as one of ideal nano-fillers in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore CNT composites are increasingly used in fabricating conductive materials, structural materials with high strength and low weight, and multifunctional materials. The main problem of the CNT composites is difficulty in the dispersion of CNT in the polymer matrix. In this study multi-walled carbon nanotubes (MWNT) were pretreated by the physical process utilizing a wrapping method. After the pretreatment polymer/MWNT nanocomposites were prepared by melt processing. The effect of functionalization MWNT by wrapping with styrene acrylonitrile (SAN) on the mechanical and electrical properties of acrylonitrile butadiene styrene resin (ABS)/MWNT composites was studied by comparing the properties of ABS mixed with the neat MWNT. Electrical and mechanical properties of ABS/MWNT nanocomposites were studied as a function of the functionalization and content of MWNT. The tensile strength of the ABS/MWNT nanocomposites increased, but the impact strength decreased. The polymer wrapping in ABS system has little effect on the improvement of electrical properties.

Flexural behaviour of CFST members strengthened using CFRP composites

  • Sundarraja, M.C.;Prabhu, G. Ganesh
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.623-643
    • /
    • 2013
  • Concrete filled steel tubular members (CFST) become a popular choice for modern building construction due to their numerous structural benefits and at the same time aging of those structures and member deterioration are often reported. Therefore, actions like implement of new materials and strengthening techniques become essential to combat this problem. The application of carbon fibre reinforced polymer (CFRP) with concrete structures has been widely reported whereas researches related to strengthening of steel structures using fibre reinforced polymer (FRP) have been limited. The main objective of this study is to experimentally investigate the suitability of CFRP to strengthening of CFST members under flexure. There were three wrapping schemes such as Full wrapping at the bottom (fibre bonded throughout entire length of beam), U-wrapping (fibre bonded at the bottom throughout entire length and extended upto neutral axis) and Partial wrapping (fibre bonded in between loading points at the bottom) introduced. Beams strengthened by U-wrapping exhibited more enhancements in moment carrying capacity and stiffness compared to the beams strengthened by other wrapping schemes. The beams of partial wrapping exhibited delamination of fibre and were failed even before attaining the ultimate load of control beam. The test results showed that the presence of CFRP in the outer limits was significantly enhanced the moment carrying capacity and stiffness of the beam. Also, a non linear finite element model was developed using the software ANSYS 12.0 to validate the analytical results such as load-deformation and the corresponding failure modes.

Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifier

  • Kwon, Youbin;Shim, Wonbo;Jeon, Seung-Yeol;Youk, Ji-Ho;Yu, Woong-Ryeol
    • Carbon letters
    • /
    • v.20
    • /
    • pp.53-61
    • /
    • 2016
  • The reportedly synergistic effects of carbon nanotubes (CNTs) and graphene hybrids have prompted strong demand for an efficient modifier to enhance their dispersion. Here, we investigated the ability of poly(acrylonitrile) (PAN) to overcome the van der Waals interaction of multi-walled CNTs (MWCNTs) and graphene by employing a simple wrapping process involving ultrasonication and subsequent centrifugation of PAN/MWCNT/graphene solutions. The physical wrapping of MWCNTs and graphene with PAN was investigated for various PAN concentrations, in an attempt to simplify and improve the polymer-wrapping process. Transmission electron microscopy analysis confirmed the wrapping of the MWCNTs and graphene with PAN layers. The interaction between the graphitic structure and the PAN molecules was examined using proton nuclear magnetic resonance, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The obtained results revealed that the cyano groups of the PAN molecules facilitated adhesion of the PAN molecules to the MWCNTs and graphene for polymer wrapping. The resulting enhanced dispersion of MWCNTs and graphene was verified from zeta potential and shelf-life measurements.

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer (수용성 고분자로 Wrapping된 그래핀 치환체와 PEDOT/PSS 복합체의 합성 및 특성)

  • Park, No Il;Lee, Seul Bi;Lee, Seong Min;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.581-585
    • /
    • 2014
  • We conducted investigation on the hybridization of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT : PSS) with graphene derivative (G-PSS), which has been prepared by wrapping reduced graphene oxide (RGO) with PSS. In situ polymerization of PEDOT/PSS in the presence of G-PSS afforded the PEDOT/PSS and graphene hybrid (GP). The analysis of XPS, IR and Raman spectroscopies for GP showed that PEDOT/PSS was successfully synthesized and hybridized with graphene. Compared to the G-PSS, GP showed an enhanced electrical conductivity of $4.46{\times}10^2S/m$ with a good wter-dispersity.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Comparative study of the seismic response of RC framed buildings retrofitted using modern techniques

  • Mazza, Fabio
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.29-48
    • /
    • 2015
  • The main purpose of this work is to compare different criteria for the seismic strengthening of RC framed buildings in order to find the optimal combinations of these retrofitting techniques. To this end, a numerical investigation is carried out with reference to the town hall of Spilinga (Italy), an RC framed structure with an L-shaped plan built at the beginning of the 1960s. Five structures are considered, derived from the first by incorporating: carbon fibre reinforced polymer (FRP)-wrapping of all columns; base-isolation, with high-damping-laminated-rubber bearings (HDLRBs); added damping, with hysteretic damped braces (HYDBs); FRP-wrapping of the first storey columns combined with base-isolation or added damping. A three-dimensional fibre model of the primary and retrofitted structures is considered; bilinear and trilinear laws idealize, respectively, the behaviour of the HYDB, providing that the buckling be prevented, and the FRP-wrapping, without resistance in compression, while the response of the HDLRB is simulated by using a viscoelastic linear model. The effectiveness of the retrofitting solutions is tested with nonlinear dynamic analyses based on biaxial accelerograms, whose response spectra match those in the Italian seismic code.

Effect of BFRP Wrapping on Seismic Behavior of Rectangular RC Columns (BFRP 보강이 직사각형 단면 철근콘크리트 기둥의 지진거동에 미치는 영향)

  • Lee, Hyerin;Cho, Junghyun;Lee, Seung-Geon;Lee, Su-Hyung;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.153-160
    • /
    • 2020
  • Columns are one of the most critical parts of a structural system subjected to earthquake excitations. In this regard, extensive experimental studies have been conducted to evaluate the effect of fiber reinforced polymer (FRP) wrapping on the seismic performance of reinforced concrete (RC) columns. Among them, many studies focused on the behavior of circular or square RC columns strengthened with CFRP or GFRP sheets. Since the cross-sectional shape affects confinement by FRP wrapping, its strengthening effect and final damage pattern may differ with shapes. In this study, a series of cyclic tests was conducted to investigate the seismic behavior of rectangular reinforced concrete columns strengthened with basalt-based fiber reinforced polymer (BFRP) sheets and composite fiber panels. The result shows that the effect of strengthening is not significant, and it implies a little increase of confinement by BFRP sheets and composite fiber panels, which is considered partly due to the cross-sectional shape of the columns.