• Title/Summary/Keyword: polymer waveguide

Search Result 136, Processing Time 0.023 seconds

Optimal Design of Dielectric-loaded Surface Plasmon Polariton Waveguide with Genetic Algorithm

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-281
    • /
    • 2010
  • We propose a design and optimization method for a dielectric-loaded surface plasmon polariton waveguide using a genetic algorithm. This structure consists of a polymer ridge on top of two layers of substrate and gold film. The thickness, width and refractive index of the ridge are designed to optimize the figures of merit including mode confinement and propagation length. The modal analysis combined with the effective index method shows that the designed waveguide exhibits a fundamental propagation mode with high mode confinement while ensuring that the propagation loss remains relatively low.

Metal-defined Electro-Optic Polymer Waveguide Operating at both $1.31{\mu}m$ and $1.55{\mu}m$ Wavelength ($1.31{\mu}m$ and $1.55{\mu}m$ 파장에서 금속 defined Electro-Optic Polymer Waveguide)

  • Park, G.C.;Lee, J.;Chung, H.C.;Jeong, W.J.;Yang, H.H.;Yoon, J.H.;Park, H.R.;Gu, H.B.;Lee, K.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.21-23
    • /
    • 2004
  • We report experimental results demonstrating a novel metal defined polymer optical waveguide with a low loss in electro-optic polymers for the first time. The polymer optical waveguides are created using a metal film on the top of upper cladding without any conventional etching process. The fabricated waveguides have an excellent lateral optical mode confinement at both 1.31 ${\square}m$ and 1.55 ${\square}m$ wavelength, resulting in a fiber-to lens optical insertion loss of ~ 7 dB at 1.55 ${\square}m$ and ~4.5 dB at 1.31 ${\square}m$ wavelength in a 3.5cm total length for TM polarizations, respectively. We also present the optical loss dependence of the waveguide as a function of optical wavelengths. These results may be used in the complex design of integrated polymer optical circuits that need simpler and cheaper fabrication process.

  • PDF

A Study on Laser Micro-Patterning using UV Curable Polymer (광경화성 폴리머를 이용한 레이저 미세패터닝의 기초연구)

  • 김정민;신보성;김재구;장원석;양성빈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.612-615
    • /
    • 2003
  • Maskless laser patterning process is developed using 3rd harmonic Diode Pumped Solid State Laser with near visible wavelength of 355 nm. Photo-sensitive curable polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D patterns. We performed basic experiments for the various process conditions such as laser power, writing speed, laser focus, and polymer optical property to gain the optimal conditions. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8${\mu}{\textrm}{m}$ width and 5.4${\mu}{\textrm}{m}$ height. This process could be applied to fabricate a single mode waveguide without expensive mask projection method.

  • PDF

Atomic Layer Deposition Method for Polymeric Optical Waveguide Fabrication (원자층 증착 방법을 이용한 폴리머 광도파로 제작)

  • Eun-Su Lee;Kwon-Wook Chun;Jinung Jin;Ye-Jun Jung;Min-Cheol Oh
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.175-183
    • /
    • 2024
  • Research into optical signal processing using photonic integrated circuits (PICs) has been actively pursued in various fields, including optical communication, optical sensors, and quantum optics. Among the materials used in PIC fabrication, polymers have attracted significant interest due to their unique characteristics. To fabricate polymer-based PICs, establishing an accurate manufacturing process for the cross-sectional structure of an optical waveguide is crucial. For stable device performance and high yield in mass production, a process with high reproducibility and a wide tolerance for variation is necessary. This study proposes an efficient method for fabricating polymer optical-waveguide devices by introducing the atomic layer deposition (ALD) process. Compared to conventional photoresist or metal-film deposition methods, the ALD process enables more precise fabrication of the optical waveguide's core structure. Polyimide optical waveguides with a core size of 1.8 × 1.6 ㎛2 are fabricated using the ALD process, and their propagation losses are measured. Additionally, a multimode interference (MMI) optical-waveguide power-splitter device is fabricated and characterized. Throughout the fabrication, no cracking issues are observed in the etching-mask layer, the vertical profiles of the waveguide patterns are excellent, and the propagation loss is below 1.5 dB/cm. These results confirm that the ALD process is a suitable method for the mass production of high-quality polymer photonic devices.

Waveguiding Effect in Electroabsorption Modulators: Passivation Layers and Their Impact on Extinction Ratios

  • Shin, Dong-Soo
    • ETRI Journal
    • /
    • v.27 no.1
    • /
    • pp.95-101
    • /
    • 2005
  • Waveguide structures of the stand-alone electroabsorption (EA) modulator and the electroabsorption modulated laser (EML) are investigated using the 3D beam propagation method. The EA waveguide structures with InP-based passivation layers show saturation in the extinction ratio (ER) due to the stray light traveling through the passivation layers. This paper demonstrates that narrower passivation layers suppress stray-light excitation in the EA waveguide, increasing the ER. A taper structure in the isolation section of the EML waveguide can reduce the mode mismatch and suppress the excitation of the stray light, increasing the ER further. Low-index-polymer passivation layers can confine the mode more tightly in the active waveguide, yielding an even higher ER.

  • PDF

Large core polymeric single mode waveguide for passive fiber alignment (광섬유 수동정렬을 위한 단일 모드 대형 코어 폴리머 광도파로)

  • Cho, Su-Hong;Beak, Yu-Jin;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.79-84
    • /
    • 2005
  • To increase the tolerance for passive fiber alignment, a single mode polymer waveguide with a large core structure is demonstrated. The large core waveguide is designed to have a mode profile comparable to that of a thermally expanded core (TEC) fiber, and it can be connected to a high-contrast waveguide through an adiabatic transition taper structure. From a waveguide with a rectangular core of 25 ${\times}$ 25 ${\mu}{\textrm}{m}$$^2$, a single mode propagation is observed when the index contrast is as low as 0.0005. A UV-cured injection molding method is used to fabricate the thick core structure. Due to the large mode size, the insertion loss of the device is below 0.5 dB until the lateral displacement of the TEC fiber is 4.5 ${\mu}{\textrm}{m}$. The low insertion loss is important for reproducible passive alignment.

Fabrication and optical properties measurement of the optical filters utilizing fiber-to-planar waveguide coupler (광섬유-평면도파로 광 결합기를 이용한 광 필터 제작과 특성 측정)

  • 김광택;이소영;손경락;이종훈;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.5
    • /
    • pp.419-423
    • /
    • 1999
  • Optical filters utilizing the evanescent filed coupling between the side polished fiber and polymer planar waveguide were fabricated and optical properties of the devices were measured. A scheme for reducing polarization dependent properties of the device was proposed and demonstrated experimentally. Our measurement results showed that resonance wavelengths and filtering depth of the optical filters can be determined by adjusting thickness of planar waveguide and polishing depth of the fiber. The device fabrication procedure including fiber polishing steps and formation of polymer planar waveguide were described. The optical characteristics of fabricated optical filers were that 3 dB bandwidth was 15 nm, the resonance wavelength difference between the TE and TM polarized response was less then 2 nm, and insertion loss was less then 0.2 dB. The measured resonance wavelength drift dut to the variation of ambient temperature was -0.35 nm/$^{\circ}C$.

  • PDF

Fabrication and characteristics of photofunctional polymer waveguide-type UV sensor (광기능성 폴리머 도파로형 자외선 센서의 제작 및 특성)

  • Kim, Kyu-Jin;Jang, Su-Won;Kang, Byoung-Ho;Kim, Do-Eok;Kwon, Dae-Hyuk;Kim, Sung-Hoon;Lee, Yong-Hyun;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.231-236
    • /
    • 2006
  • Single-mode planar waveguide type UV sensor was fabricated using SU-8 and photochromic dye. Polymer waveguide was fabricated $10{\mu}m$ width and $2{\mu}m$ thickness for single-mode operation. The UV sensor had an absorbance with $0.0396{\sim}0.114$ absorbance/mW respectively when the 5 mm sensing area was irradiated with UV for 3 sec. And sensor had a linear properties by sensing area variation. Proposed single-mode sensor had more excellent properties of UV sensitivity than other UV sensors.