• Title/Summary/Keyword: polymer synthesis and characterization

Search Result 306, Processing Time 0.031 seconds

Synthesis and Characterization of Degradable Polycationic Polymers as Gene Delivery Carriers

  • Kim, Hyun-Jin;Kwon, Min-Sung;Choi, Joon-Sig;Kim, Bo-Hye;Yoon, Jae-Keun;Kim, Kwan;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.63-67
    • /
    • 2007
  • Biodegradable cationic poly(ester-amide) polymers were synthesized by double-monomer method, that showed excellent solubility in many organic solvents and water. Different degradation patterns were obtained by the regulation of monomer ratios and overall long period of time of DNA protection up to 12 days was shown by PicoGreen reagent assay. Good transfection profiles in the presence of serum and very low toxicity on mammalian cells may allow these polymers to become suitable for long-term gene delivery systems and therapeutic applications.

Characteristics of the Topography Image of Polyurethane Polymer LB Films (폴리우레탄 고분자 LB막의 표면형상 이미지 특성)

  • Seo, Jeong-Yeul;Kim, Do-Kyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1708-1710
    • /
    • 2000
  • The synthesis and characterization of polymers for organic Metal/Insulator/Metal(MIM) devices were investigated from LB films. The physicochemical properties of the LB films were examined by UV absorption spectrum and AFM. The AFM images showed for network structure of polyurethane monolayer that the film formed an unsymmetry mesh with intermolecular interaction within the large scale. The stable images are probably due to a strong interaction between the monolayer film and Si substrate. We are unable to obtain molecular resolution in images of the films but did see a marked contrast between images of the bare substrate and those with the network structure film deposited onto it.

  • PDF

Polymerization of N-(Propargyloxy)phthalimide by Transition Metal Catalysts

  • Gal Yeong-Soon;Jung Bal;Lee Won-Chul;Choi Sam-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.625-627
    • /
    • 1992
  • This article deals with the synthesis and characterization of poly [N-(propargyloxy)phthalimide][poly (POPI)]. The polymerization of POPI was carried out by various transition metal catalysts. $MoCl_5$-based catalysts were found to be more effective than $WCl_6$-based catalysts. However, the polymer yield was relatively low (maximum 35%). The polymerization of POPI by $PdCl_2$ gave poly (POPI) in fair yields in DMF and pyridine. The resulting poly (POPI)s were mostly insoluble in organic solvents. The infrared spectrum of poly (POPI) showed no peak at 2135 $cm^{-1}$ due to acetylenic $C{\equiv}C$ stretching frequency. Instead, the carbon-carbon double bond stretching frequency was observed at 1600-1650 $cm^{-1}$. The TGA thermogram showed that the present poly (POPI) is thermally stable up to $160^{\circ}C.$.

Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymer with modified bisphenol (설폰화 폴리아닐렌 공중합체 합성 및 특성)

  • Kim, Dae-Sik;Shin, Kwang-Ho;Park, Ho bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.133-135
    • /
    • 2004
  • A direct methanol fuel cells (DMFCs) using polymer electrolyte membranes are one of the most attractive power sources for a wide range of application from vehicles to portable utilities due to the stable operation at a rarely low temperature, the high energy generation yield and energy density, the simplicity of system.(omitted)

  • PDF

Characterization of Non-precious Metal for Fuel Cell Catalyst with Conducting Polymer (전도성 고분자를 이용한 연료전지용 비백금 촉매의 특성화 정량)

  • Kim, Hun-Jong;Lee, Hyo June;Ahn, Ji Eun;Kim, Hansung;Lee, Ho-Nyun
    • Applied Chemistry
    • /
    • v.15 no.2
    • /
    • pp.137-140
    • /
    • 2011
  • Excellent active and stable platinum catalyst fuel cells currently being used as a catalyst. However, because of the high price of platinum catalyst, such as non-precious catalyst has been studied by a variety of fuel cell catalysts. In this study, Co/ PANi//CNT composite catalyst after synthesis through various heating process was to increase the activity of the catalyst. At 700℃ showed the best catalytic activity, using a composite catalyst was to be used as cathode electrodes in fuel cell.

Synthesis and Characterization of Temperature and pH Sensitive Graft Copolymers Based on Pluronic (Pluronic을 기초로 한 온도와 pH에 민감한 그래프트 공중합체의 합성과 특성)

  • Oh, Yeon-Jeong;Lee, Gi-Baek;Park, Sung-Young
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.223-228
    • /
    • 2012
  • Temperature and pH sensitive graft copolymers [Pluronic-$g$-poly(NIPAAm-$co$-MMA), Polymer A] and [Pluronic-$g$-poly( NIPAAm-$co$-MAA), Polymer C] were synthesized by macro radical graft polymerization with $N$-isopropylacrylamide (NIPAAM)/$N,N$-diethylaminoethylmethacrylate (DEAEMA) and $N$-isopropylacrylamide (NIPAAm)/methacrylic acid (MAA) based on Pluronic, respectively. The chemical structure and molecular weight of the graft copolymers was characterized by $^1H$ NMR and gel permeation chromatography. The aqueous solution properties of graft copolymers were measured using a UV-visible spectrophotometer, contact angle and dynamic light scattering equipment with different temperature and pH conditions. The obtained graft copolymers showed a very sensitive phase transition in response to temperature and pH in aqueous media which suggested that the amine group of DEAEMA segment and carboxylic group of MAA had a great influence on the lower critical solution temperatures (LCST) in Polymer A and C, respectively. The graft copolymers can be utilized for drug delivery system and molecular switching applications where responses to temperature and pH changes are relevant.

Synthesis and characterization of polymer electrolyte membrane for fuel cell including sulfonated bis (4-fluorophenyl) phenylphosphine oxide (술폰화된 비스(4-플루오로페닐) 페닐포스핀옥사이드를 포함한 연료전지용 고분자 전해질막의 합성과 특성분석)

  • Yoo, Eun Sil;Nahm, Kee Suk;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.176-183
    • /
    • 2016
  • This study relates to a polymer electrolyte membrane for improved performance fuel cell, were researched with respect to properties required for driving a fuel cell. The bis(4-fluorophenyl)phenyl phosphine oxide was sulfonated using fuming sulfuric acid. Synthetic hydrophilic oligomer and the hydrophobic oligomer and the block copolymers were prepared via aromatic nucleophilic substitution polycondensation. A block copolymer structure and degree of sulfonation was analyzed by $^1H$-NMR and gel permeation chromatography(GPC) analysis. Thermal stability was confirmed by thermogravimetric analysis(TGA), block copolymer was stable at high temperature(>$200^{\circ}C$), The ion conductivity was measured in order to demonstrate the performance of fuel cell. Synthesis membrane was the increase of temperature was improved conductivity up to 58 mS/cm due to the influence of the developed ion clusters. The phase separation of the polymer was observed to make AFM analysis.

Fluorene-Based Conjugated Copolymers Containing Hexyl-Thiophene Derivatives for Organic Thin Film Transistors

  • Kong, Ho-Youl;Chung, Dae-Sung;Kang, In-Nam;Lim, Eun-Hee;Jung, Young-Kwan;Park, Jong-Hwa;Park, Chan-Eon;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1945-1950
    • /
    • 2007
  • Two fluorene-based conjugated copolymers containing hexyl-thiophene derivatives, PF-1T and PF-4T, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of PF-1T and PF-4T were found to be 19,100 and 13,200, respectively. These polymers were soluble in common organic solvents such as chloroform, chlorobenzene, toluene, etc. The UV-vis absorption maximum peaks of PF-1T and PF-4T in the film state were found to be 410 nm and 431 nm, respectively. Electrochemical characterization revealed that these polymers have low highest occupied molecular orbital (HOMO) levels, indicating good resistance against oxidative doping. Thin film transistor devices were fabricated using the top contact geometry. PF-1T showed much better thin-film transistor performance than PF-4T. A thin film of PF- 1T gave a saturation mobility of 0.001-0.003 cm2 V?1 s?1, an on/off ratio of 1.0 × 105, and a small threshold voltage of ?8.3 V. To support TFT performance, we carried out DSC, AFM, and XRD measurements.

Synthesis and Characterization of Water Repellent Materials Containing 2-(Perfluorooctyl) Ethyl Acrylate and m-Isopropenyl-α, α-Dimethylbenzyl Isocyanate (2-(Perfluorooctyl) Ethyl Acrylate (PFOEA) 및 m-Isopropenyl-α, α-Dimethylbenzyl Isocyanate (TMI)가 함유된 발수체 합성 및 특성연구)

  • Kang, Young Taec;Kwak, Eun Mi;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.151-160
    • /
    • 2014
  • A series of terpolymers based on stearyl methacrylate (SMA), n-methyol acrylamide (n-MAM), and 2-(perfluorooctyl) ethyl acrylate (PFOEA) were synthesized by changing PFOEA contents up to 8 wt% in order to obtain optimal water-repellent properties. In addition, various contents of m-isopropenyl-${\alpha}$,${\alpha}^{\prime}$-dimethylbenzyl isocyanate (TMI) from 1 to 4 wt% were added to the above terpolymers with 4 wt% of PFOEA content. The emulsion polymerization was carried out using tridecyl alcohol (EO)7 (TDA-7) as a nonionic surfactant, alkyl dimethyl amine derivatives (ADAD) as a cationic surfactant, and 2,2'-azobis(2-amidinopropane dihydrochoride) (AAPDL) as an initiator. The synthesized copolymers were characterized by FT-IR spectroscopies, contact angle, surface energy, and water-repellency. Surface and thermal properties were analyzed by SEM, TGA, and DSC. It was found that water repellency increased with increasing the contents of PFOEA and TMI.

Synthesis and Characterization of Red Electrophosphorescent Polymers Containing Pendant Iridium(III) Complex Moieties

  • Xu, Fei;Mi, Dongbo;Bae, Hong Ryeol;Suh, Min Chul;Yoon, Ung Chan;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2609-2615
    • /
    • 2013
  • A series of fluorene-carbazole copolymers containing the pendant phosphor chromophore $Ir(absn)_2(acac)$ (absn: 2-(1-naphthyl)benzothiazole; acac: acetylacetone) were designed and synthesized via Yamamoto coupling. In the film state, these copolymers exhibited absorption and emission peaks at approximately 389 and 426 nm, respectively, which originated from the fluorene backbone. However, in electroluminescent (EL) devices, a significantly red-shifted emission at approximately 611 nm was observed, which was attributed to the pendant iridium(III) complex. Using these copolymers as a single emission layer, polymer light-emitting devices with ITO/PEDOT:PSS/polymer:DNTPD/TmPyPb/LiF/Al configurations exhibited a saturated red emission at 611 nm. The attached iridium(III) complex had a significant effect on the EL performance. A maximum luminous efficiency of 0.85 cd/A, maximum external quantum efficiency of 0.77, maximum power efficiency of 0.48 lm/W, and maximum luminance of 883 $cd/m^2$ were achieved from a device fabricated with the copolymer containing the iridium(III) complex in a 2% molar ratio.