DOI QR코드

DOI QR Code

Synthesis and Characterization of Temperature and pH Sensitive Graft Copolymers Based on Pluronic

Pluronic을 기초로 한 온도와 pH에 민감한 그래프트 공중합체의 합성과 특성

  • Oh, Yeon-Jeong (Department of Chemical & Biological Engineering, Chungju National University) ;
  • Lee, Gi-Baek (Department of Chemical & Biological Engineering, Chungju National University) ;
  • Park, Sung-Young (Department of Chemical & Biological Engineering, Chungju National University)
  • 오연정 (충주대학교 화공생물공학과) ;
  • 이기백 (충주대학교 화공생물공학과) ;
  • 박성영 (충주대학교 화공생물공학과)
  • Received : 2011.07.12
  • Accepted : 2011.09.14
  • Published : 2012.03.25

Abstract

Temperature and pH sensitive graft copolymers [Pluronic-$g$-poly(NIPAAm-$co$-MMA), Polymer A] and [Pluronic-$g$-poly( NIPAAm-$co$-MAA), Polymer C] were synthesized by macro radical graft polymerization with $N$-isopropylacrylamide (NIPAAM)/$N,N$-diethylaminoethylmethacrylate (DEAEMA) and $N$-isopropylacrylamide (NIPAAm)/methacrylic acid (MAA) based on Pluronic, respectively. The chemical structure and molecular weight of the graft copolymers was characterized by $^1H$ NMR and gel permeation chromatography. The aqueous solution properties of graft copolymers were measured using a UV-visible spectrophotometer, contact angle and dynamic light scattering equipment with different temperature and pH conditions. The obtained graft copolymers showed a very sensitive phase transition in response to temperature and pH in aqueous media which suggested that the amine group of DEAEMA segment and carboxylic group of MAA had a great influence on the lower critical solution temperatures (LCST) in Polymer A and C, respectively. The graft copolymers can be utilized for drug delivery system and molecular switching applications where responses to temperature and pH changes are relevant.

온도와 pH 민감성을 갖는 그래프트 공중합체[Pluronic-$g$-poly(NIPAAm-$co$-MMA), Polymer A]와 [Pluronic-$g$-poly(NIPAAm-$co$-MAA), Polymer C]는 $t$-butylperoxybenzoate를 이용하여 Pluronic 공중합체의 주사슬에 $N$-isopropylacrylamide (NIPAAm)/$N,N$-diethylaminoethylmethacrylate (DEAEMA)와 $N$-isopropylacrylamide(NIPAAm)/methacrylic acid (MAA)를 각각 합성하였다. 그래프트 공중합체는 $^1H$ NMR과 젤 투과 크로마토그래피를 통해 공중합체의 화학적 구조와 분자량을 측정하였다. 그래프트 공중합체의 수용액 상에서의 특성은 다른 온도와 pH 조건에서 자외 및 가시선 분광 분석법, 접촉각 측정과 동적 광산란으로 측정되었다. 그래프트 공중합체는 수용액상에서 온도와 pH에 따라 민감한 상 변화를 보인다. 이는 DEAEMA 단량체의 아민 그룹과 MAA 단량체의 카복실 그룹은 각각 Polymer A와 Polymer C에서 하한임계용액온도에 큰 영향을 미친다고 제시한다. 그래프트 공중합체는 온도와 pH 변화에 관련된 다양한 약물 전달과 분자 스위치 적용에 사용될 수 있다.

Keywords

References

  1. S. Choi and J. Lee, Polymer(Korea), 35, 223 (2011).
  2. C. Ding, L. Zhao, F. Liu, J. Cheng, J. Gu, S. Dan, C. Liu, X. Qu, and Z. Yang, Biomacromolecules, 11, 1043 (2010). https://doi.org/10.1021/bm1000179
  3. E. Lee, K. Kim, and B. Kim, Polymer(Korea), 33, 441 (2009).
  4. Y. Shin, K. S. Kim, and B. Kim, Polymer(Korea), 32, 421 (2008).
  5. K. S. Kim and S. J. Park, Colloid Surface B, 80, 240 (2010). https://doi.org/10.1016/j.colsurfb.2010.06.017
  6. B. C. Anderson, S. M. Cox, P. D. Bloom, V. V. Sheares, and S. K. Mallapragada, Macromolecules, 36, 1670 (2003). https://doi.org/10.1021/ma0211481
  7. E. S. Gil and S. M. Hudson, Prog. Polym. Sci., 29, 1173 (2004). https://doi.org/10.1016/j.progpolymsci.2004.08.003
  8. Y. Zhang and Y. M. Lam, J. Colloid Interface Sci., 306, 398 (2007). https://doi.org/10.1016/j.jcis.2006.10.073
  9. M. K. Kang and J. C. Kim, Polymer(Korea), 34, 79 (2010).
  10. X. Huang, D. Appelhans, P. Formanek, F. Simon, and B. Voit, Macromolecules, 44, 8351 (2011). https://doi.org/10.1021/ma201982f
  11. X. Jiang and B. Zhao, Macromolecules, 41, 9366 (2008). https://doi.org/10.1021/ma8018238
  12. Y. K. Sung, J. H. Jung, and I. J. Choi, Polymer(Korea), 22, 84 (1998).
  13. S. Sheikh, T. Tony, E. Simon, and R. S. Brian, Langmuir, 22, 8311 (2006). https://doi.org/10.1021/la061229g
  14. H. K. Cho, B. S. Kim, and S. T. Noh, Polymer(Korea), 25, 186 (2001).
  15. B. Zhang, W. He, W. Li, L. Li, K. Zhang, and H. Zhang, Polymer, 51, 3039 (2010). https://doi.org/10.1016/j.polymer.2010.05.012
  16. Y. Hu, T. Litwin, A. R. Nagaraja, B. Kwong, J. Katz, N. Watson, and D. J. Irvine, Nano Lett., 7, 3056 (2007). https://doi.org/10.1021/nl071542i
  17. H. Zhang, P. Ni, J. He, and C. Liu, Langmuir, 24, 4647 (2008). https://doi.org/10.1021/la704036a
  18. H. Wei, X. Zhang, Y. Zhou, S. Cheng, and R. Zhuo, Biomaterials, 27, 2028 (2006). https://doi.org/10.1016/j.biomaterials.2005.09.028
  19. M. Li, G. L. Li, Z. Zhang, J. Li, K-.G. Neoh, and E.-T. Kang, Polymer, 51, 3377 (2010). https://doi.org/10.1016/j.polymer.2010.05.032
  20. C. Mengel, A. R. Esker, W. H. Meyer, and G. Wegner, Langmuir, 18, 6365 (2002). https://doi.org/10.1021/la011312y
  21. D. Yoo, S. S. Shiratori, and M. F. Rubner, Macromolecules, 31, 4309 (1998). https://doi.org/10.1021/ma9800360
  22. H. J. Lee, Y. Nakayama, and T. Matsuda, Macromolecules, 32, 6989 (1999). https://doi.org/10.1021/ma990566b
  23. H. J. Song, N. Y. Hong, K. H. Kim, Y. J. Shin, and J. O. Lee, Polymer(Korea), 21, 999 (1997).
  24. C. Brady, S. E. J. Bell, C. Parsons, S. P. Gorman, D. S. Jones, and C. P. McCoy, J. Phys. Chem. B, 111, 527 (2007). https://doi.org/10.1021/jp066217i
  25. I. Q. Garrido, A. P. Cabanillas, L. Garrido, and J. M. Barrales- Rienda, Macromolecules, 38, 7434 (2005). https://doi.org/10.1021/ma0509513
  26. G. Niu, H. Zhang, L. Song, X. Cui, H. Cao, Y. Zheng, S. Zhu, Z. Yang, and H. Yang, Biomacromolecules, 9, 2621 (2008). https://doi.org/10.1021/bm800573e

Cited by

  1. Tumor microenvironment-responsive touch sensor-based pH-triggered controllable conductive hydrogel vol.25, pp.None, 2021, https://doi.org/10.1016/j.apmt.2021.101259