• Title/Summary/Keyword: polymer repair mortar

Search Result 85, Processing Time 0.029 seconds

The Performance Evaluation of Mortar Using Calcium Nitrite and CO2 Nano-Bubble Water (아질산칼슘과 탄산나노버블수를 사용한 모르타르의 성능 평가)

  • Kim, Ho-jin;Kim, Jin-Sung;Choi, Hyeong-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.145-146
    • /
    • 2020
  • This study investigated the performance evaluation of polymer cement mortar for repairing concrete structures using calcium nitrite(Ca(NO2)2) and CO2 nano-bubble mixing water to develop section-restoration methods for the repair and reinforcement of cracks. The evaluation items were strength and microstructure analysis at 28 days of age according to the change in the amount of calcium nitrite and the use of CO2 nano-bubble water. As a result of the experiment, it was confirmed that the performance of polymer cement mortar for repairing concrete structures was improved by the generation of nitrite-based hydration products when calcium nitrite and CO2 nano-bubble water were used.

  • PDF

Mechanical and durability properties of fluoropolymer modified cement mortar

  • Bansal, Prem Pal;Sidhu, Ramandeep
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.317-327
    • /
    • 2017
  • The addition of different types of polymers such as SBR, VAE, Acrylic, etc. in concrete and mortar leads to an increase in compressive, tensile and bond strength and decrease in permeability of polymer modified mortar (PMM) and concrete (PMC). The improvement in properties such as bond strength and impermeability makes PMM/PMC suitable for use as repair/retrofitting and water proofing material. In the present study effect of addition of fluoropolymer on the strength and permeability properties of mortar has been studied. In the cement mortar different percentages viz. 10, 20 and 30 percent of fluoropolymer by weight of cement was added. It has been observed that on addition of fluoropolymer in mortar the workability of mortar increases. In the present study all specimens were cast keeping the workability constant, i.e., flow value $105{\pm}5mm$, by changing the amount of water content in the mortar suitably. The specimens were cured for two different curing conditions. Firstly, these were cured wet for one day and then cured dry for 27 days. Secondly, specimens were cured wet for 7 days and then cured dry for 21 days. It has been observed that compressive strength and split tensile strength of specimens cured wet for 7 days and then cured dry for 21 days is 7-13 percent and 12-15 percent, respectively, higher than specimens cured one day dry and 27 days wet. The sorptivity of fluoropolymer modified mortar decreases by 88.56% and 91% for curing condtion one and two, respectively. However, It has been observed that on addition of 10 percent fluoropolymer both compressive and tensile strength decreases, but with the increase in percentage addition from 10 to 20 and 30 percent both the strengths starts increasing and becomes equal to that of the control specimen at 30 percent for both the curing conditions. It is further observed that percentage decrease in strength for second curing condition is relatively less as compared to the first curing condition. However, for both the curing conditions chloride ion permeability of polymer modified mortar becomes very low.

Enhanced Durability Performance of Polymer Modified Cement Composites for Concrete Repair Under Combined Aging Conditions (복합열화 환경을 받는 콘크리트 시설물을 위한 보수용 폴리머 시멘트 복합체의 내구성능 향상에 관한 연구)

  • Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to improve the durability performance of polymer modified cement composites for repair of concrete under combined aging conditions. The experimental procedure was divided into three parts. First, the replacement level of mineral admixtures in polymer modified cement composites were determined in an experimental study based on a Box Behnken design. Second, the flow value, compressive strength and chloride permeability test of sixteen types of mixtures were conducted. Test results show that the polymer modified cement composites were effected on the improvement of the compressive strength and permeability performance. Third, the effects on the replacement level of silica fume mixture was evaluated by the compressive strength, chloride permeability, chemical resistance and repeated freezing and thawing cycles test. They demonstrated that the polymer modified cement composites using mixture of silica fume, fly ash, and blast furnace slag improved the durability performance.

Evaluation of Durability on Latex Modified Mortar for maintenance in concrete structure (콘크리트 구조물 보수용 라텍스개질 모르타르의 내구성능 평가)

  • Sung, Sang-Kyoung;Park, Sung-Ki;Lee, Sang-Woo;Won, Jong-Pil;Park, Chan-Gi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.633-636
    • /
    • 2008
  • Concrete structures are occur many various deteriorations in the course of time and many efforts have progressed to improve on performance of concrete. The purpose of this study is to evaluate the durability of latex modified mortar in order to repair concrete structure which are happened deterioration. In this study, we tested plastic shrinkage, drying shirnkage, repeated freezing and thawing, permeability and resistance of chemical solution. Latex modified mortar and two kinds of sprayed polymer mortar used on durability test. As a result of test, latex modified repair mortar was exhibited durablilty improvement compared to the conventional sprayed polymer mortars. It is judged the fact that latex modified mortar have no problem in site application but additionally many research will be necessary.

  • PDF

Evaluation of Fire Resistance Performance of Polymer Modified Cement Mortar Using Polypropylene Fiber (폴리프로필렌 섬유를 혼입한 폴리머 시멘트 모르타르의 내화성능 평가)

  • Jeon, Ki-Soo;Sim, Sang-Rak;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • In this study, the fire resistance capabilities of polypropylene fiber-reinforced polymer-modified cement mortar were assessed to guarantee the fire resistance fo this materials, commonly employed in the repair of concrete structures. Experimental outcomes revealed that an increased water and polymer content heightened the likelihood of spalling, while longer polypropylene fibers and elevated polymer concentrations proved more effective in mitigating spalling.

Shrinkage-Induced Stresses at Early Ages in Composite Concrete Beams

  • Park, Dong-Uk;Lee, Chang-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • Stresses that develop due to differential shrinkage between polymer modified cement mortar (PM) and Portland cement concrete (PCC) in a repaired concrete beam at early ages were investigated. Interface delamination or debonding of the newly cast repair material from the base is often observed in the field when the drying shrinkage of the repair material is relatively large. This study presents results of both experimental and analytical works. In the experimental part of the study, development of the material properties such as compressive strength, elastic modulus, interface bond strength, creep constant, and drying shrinkage was investigated by testing cylinders and beams for a three-week period in a constant-temperature chamber. Development of shrinkage-induced strains in a PM-PCC composite beam was determined. In the analytical part of the study, two analytical solutions were used to compare the experimental results with the analytically predicted values. One analysis method was of an exact type but could not consider the effect of creep. The other analysis method was rather approximate in nature but the creep effect was included. Comparison between the analytical and the experimental results showed that both analytical procedures resulted in stresses that were in fair agreement with the experimentally determined values. It may be important to consider the creep effect to estimate shrinkage-induced stresses at early ages.

  • PDF

Development of fine grained concretes for textile reinforced cementitious composites

  • Daskiran, Esma Gizem;Daskiran, Mehmet M.;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.279-295
    • /
    • 2016
  • A new innovative composite material is textile reinforced cementitious composite (TRCC). To achieve high flexural performance researchers suggest polymer modification of TRCC matrices. In this study, nine ready mix repair mortars commonly used in construction industry and the production of TRCC elements were examined. Mechanical properties such as compressive and flexural strength, drying shrinkage were studied. Being a significant durability concern, alkali silica reaction tests were performed according to related standards. Results showed that, some ready repair mortar mixes are potentially reactive due to the alkali silica reaction. Two of the ready mortar mixes labelled as non-shrinkage in their technical data sheets showed the highest shrinkage. In this experiment, researchers designed new matrices. These matrices were fine grained concretes modified with polymer additives; latexes and redispersible powders. Two latexes and six redispersible powder polymers were used in the study. Mechanical properties of fine grained concretes such as compressive and flexural strengths were determined. Results showed that some of the fine grained concretes cast with redispersible powders had higher flexural strength than ready mix repair mortars at 28 days. Matrix composition has to be designed for a suitable consistency for planned production processes of TRCC and mechanical properties for load-carrying capacity.

Repair Method of Concrete Structures Using Anchors (앵커를 이용한 콘크리트 구조물의 단면보수 공법)

  • Song, Hyung-Soo;Lee, Chin-Yong;Yoon, Dong-Yong,;Choi, Dong-Uk;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.267-270
    • /
    • 2005
  • Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

  • PDF

Investigation on Behaviors of Concrete Interfaces Repaired Using Anchors (앵커로 보수한 콘크리트 계면 거동의 고찰)

  • Song Hyung-Soo;Lee Chin-Yong;Yoon Dong-Yong;Min Chang-Shik;Choi Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.885-892
    • /
    • 2005
  • Recently, the damaged concrete structures are often strengthened or repaired using the polymer concrete or the polymer cement mortar. In the repaired concrete structures at early ages, internal stresses could be developed due to the differential drying shrinkage of the repair material. Due to the difference of the thermal coefficients of the repair material and existing concrete, additional stresses also could be developed as the structures are subjected to the ambient temperature changes. Theses environmentally-induced stresses can sometimes be large enough to cause damage to the structures, such as debonding of the interface between the two materials. In this study, a rational procedure was developed where anchors can be designed and installed to prevent damages in such structures by thermally-induced stresses. Finally, through the experimental study and numerical study, the effects of the repair method using anchors with debonding was investigated and discussed the results.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.