• Title/Summary/Keyword: polymer pattern

Search Result 478, Processing Time 0.025 seconds

Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers (무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조)

  • Park Jun-Hong;Pham Tuan-Anh;Lee Jae-Jong;Kim Dong-Pyo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.407-411
    • /
    • 2006
  • The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilaeane (PVS) or allylhydridopolycaybosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at $800^{\circ}C$ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.

Effects of Gas Chemistries on Poly-Si Plasma Etching with I-Line and DUV Resist (I-Line과 DUV Resist에서 Poly-Si 플라즈마 식각시 미치는 개스의 영향)

  • 신기수;김재영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 1998
  • It is necessary to use Arc layer and DUV resist to define 0.25 $\mu \textrm{m}$ line and space for 256 MDRAM devices. Poly-Si etching with Arc layer and different resists has been performed in a TCP-9408 etcher with variation of gas chemistries; $Cl_2/O_2, Cl_2/N_2, Cl_2$/HBr . DUV resist causes more positive etch profile and CD gain compared to I-line resist because the sidewall passivation is more stimulated by increasing polymerization through the loss of resist. When Arc layer is applied, CD hain also increases due to the polymeric mask formed after thching Arc layer. From the point of gas chemistry effects, the etch profile and CD gain is not improved using $Cl_2/O_2$ gas, since polymerization is accelerated in this gas. however, the vertical profile and less CD gain is obtained using $Cl_2$/HBr gas. Furthermore, HBr gas is very effective to suppress the difference of profile and CD variation between dense pattern and isolated pattern by minimizing non-uniformity of side wall passivation with pattern density.

  • PDF

Deformation Characteristics of Reinforced Polymer Concrete Beams (철근보강 폴리마 콘크리트보의 변형특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 1988
  • The primary objective of the study was to find the deformation characteristics of reinforced polymer concrete beams. A test program was carried out to compare the behavior in deformation of polyester and MMA concrete beams with cement concrete beams but with varying ratios of tensile reinforcement. From the results the following conclusions can be made. 1.The various strengths of polymer concrete ware very high compared to the strengths for cement concrete. Also, compared to conventional concrete beams, flexural strength of reinforced polymer concrete beams was distinctly higher for the same section and steel ratios. 2.The polymer concrete beams exhibit large deflections accompanied by relatively high strengths as compared to cement concrete beams. 3.The average ultimate strain at the extreme compression fiber of polymer concrete beams was 0.01 1 cm / cm, and this value was about three to four times as large as that of cement concrete beams, 4.The polymer concrete beams developed more cracks which were more wide crack distribution spacing than the cement concrete beams, and the beams failed in a more ductile manner. 5.The reinforcing steel ratio has a significant effect on the beam strength, load-deflection response, stress-strain curve, and crack pattern of polymer concrete beams.

  • PDF

Development of Roll-to- Flat Thermal Imprinting Equipment and Experimental Study of Large Area Pattern Replication on Polymer Substrate

  • Lee, Moon-G.;Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Ni, Jun;Sung, Yeon-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.307-314
    • /
    • 2009
  • Large area micro pattern replication has promising application potential in many areas. Rolling imprint process has been demonstrated as one of the most competitive processes for such micro pattern replication, because it has advantages in low cost, high throughput and high efficiency. In this paper, we developed a prototype of roll-to-flat(R2F) thermal imprint system for large area micro pattern replication process, which is one of the key processes in the fabrication of flexible displays. Experimental tests were conducted to evaluate the feasibility of system and the parameters' effect on the process, such as flat mold temperature, loading pressure and rolling speed. 100mm $\times$ 100mm stainless steel flat mold and commercially available polycarbonate sheets were used for the tests. The experimental results showed that the developed R2F system is suitable for fabrication of various micro devices with micro pattern over large area.

  • PDF

Pattern of polymer nanofibers produced by electrospinning (전기방사된 나노섬유의 Pattern 연구)

  • Kim, Kwan-Woo;Lee, Keun-Hyung;Lee, Douk-Rae;Kim, Hak-Yong;Kim, Sung-Ryong
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.171-172
    • /
    • 2003
  • In recent years, interest in electrospinning has been quickly increased, because electrospinning is a process capable of making polymer fibers in the range of nano to a few microns diameters[1,2]. The electrospinning was patented by Formhals in 1934[2] and most of studies reported on the subject of electrospinning have been focused on its phenomena[3] and on processing parameters [4-5]. (omitted)

  • PDF

Numerical Study on the Flow Characteristics of Manifold and Bipolar Plate in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지의 매니폴드 및 분리판 유동분배 특성 분석)

  • Cho, Chung-Won;Yoo, Sang-Phil;Kim, Min-Jin;Lee, Won-Yong;Kim, Chang-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.320-323
    • /
    • 2006
  • A numerical study is made of a manifold and bipolar plate in polymer electrolyte fuel cells, the aim of the present study is to describe the characteristics of flow pattern In manifold and bipolar plate. The present work shows that the flow pattern in the bipolar plate is affected by the penetration flow through GDL characterized by clamping pressure and GDL intrusion in to a channel area. Manifold geometry also affects the flow distribution. The recirculation flow by bent duct destroy even distribution In manifold, the present work shows that corner rounding can improve the manifold performance.

  • PDF

A study on Linear Pattern Fabrication of Plate-type Polymer by Using Thermal Nano Imprint Lithography Process (열간나노임프린트공정을 이용한 평판형 폴리머 소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, C.S.;Youn, S.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.616-624
    • /
    • 2009
  • In this work we demonstrate the hot-embossing process under different forming conditions such as forming temperature, load, and holding time in pressing, in order to determine the suitable conditions required for linear patterning on polymer plates (PC). Results showed that the replicated pattern depth increased in proportion to an increase in the forming temperature, load, and time. The reduction of the workpiece thickness increased according to the holding time in the pressing process. In the process of time, the reduction ratio of the workpiece thickness decreased due to the surface area increment of the workpiece, while the pressure on the workpiece declined. In order to reduce the bulging ratio we introduced a temperature difference between the upper and the lower punch.

A Study on Rheology Property and Characteristics of Thermal-curable Ag Paste for Polymer Gravure Printing (Polymer Gravure Printing용 열경화형 Ag Paste의 물성과 레올로지 특성 연구)

  • Ku, Tae-Hee;Nam, Su-Yong;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.2
    • /
    • pp.1-12
    • /
    • 2012
  • In this experiment, we have manufactured thermal-curable silver pastes for direct printing. And to enhance conductivity, printability, adhesion and hardness during polymer direct-gravure prints, we have manufactured Ag pastes by adding variety of filter contents. Then we have investigated characteristics of rheology in paste according to the gravure printability and the properties of printed conductive patterns. Depending on a variety of Ag powder, there was a big difference in sharpness of printed pattern. And also by the use of carbon, there was a big difference in amount of solvent used, conductivity and in hardness. We could improve doctoring and the sharpness of a pattern by adding Ag paste in carbon particle, but as we have used nano-sized particle, there was an increase in the amount of solvent used and also we have found out that it gives a bad effect as adhesive and hardness becomes weaker. Even though Ag particle has the same spherical shape, the surface treatments could differ from one another. And by the appropriate choice and with the suitable combination of Ag powder, excellent printability and conductivity could be obtained.

Thickness Dependence of the Glass Transition Temperature in Thin Polymer Films

  • Lee, Jeong-Kyu;Zin, Wang-Cheol
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.201-201
    • /
    • 2006
  • In this study the glass transition temperature in thin polymer films has been studied. Ellipsometry has been used to measure $T_{g}$ of thin film as a function of film thickness. Empirical equation has been proposed to fit the measured $T_{g}$ pattern with thickness. Also, a continuous multilayer model was proposed and derived to describe the effect of surface on the observed $T_{g}$ reduction in thin films, and the depth-dependent $T_{g}$ profile was obtained. These results showed that $T_{g}$ at the top surface was much lower than the bulk $T_{g}$ and gradually approached the bulk $T_{g}$ with increasing distance from the edge of the film. The model and equation were modified to apply for the polymer coated on the strongly favorable substrate and the freely standing film.

  • PDF

Fabrication of Polymer Laser Device by Two-Photon Induced Photopolymerization Technique

  • Yokoyama, Shiyoshi;Nakahama, Tatsuo;Miki, Hideki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.231-231
    • /
    • 2006
  • We fabricated a polymer sub-microstructure for optical device application by two-photon-induced laser lithography technique. Polymer pattern could be minimized as small as ${\sim}100\;nm$. The photopolymerization resin contains laser-dye, thus promising a high level of the optical gain. We utilized the lithography technique to the photonic crystal application, where the template of the two-dimensional photonic crystal was modified by polymer gain medium as defect-shape and line-shape orientations. Photonic band gap effect from polymer-doped photonic crystals is expected to exploit the application such as organic solid-state laser device.

  • PDF