• Title/Summary/Keyword: polymer nanocomposites

Search Result 376, Processing Time 0.022 seconds

Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites (분자동역학 시뮬레이션을 이용한 나노튜브/고분자 나노복합재의 물성 해석)

  • Yang, Seung-Hwa;Cho, Maeg-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.237-244
    • /
    • 2007
  • In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N $\sigma$ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature.

Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites

  • Shin, Hyunseong;Han, Jin-Gyu;Chang, Seongmin;Cho, Maenghyo
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.65-76
    • /
    • 2016
  • In this study, an influence of local variation of nanoparticulate volume fraction on the homogenized elastic properties is investigated. It is well known that interface effect is dependent on the radius and volume fraction of reinforced nanofillers. However, there is no study on the multiscale modeling and analysis of polymer nanocomposites including polydispersed nanoparticles with consideration of interphase zone, which is dependent on the volume fraction of corresponding nanoparticles. As results of numerical examples, it is confirmed that an influence of local variation of nanoparticulate volume fraction should be considered for non-dilute system such as cluster of nanoparticles. Therefore representative volume element analysis is conducted by considering local variation of nanoparticle volume fraction in order to analyze the practical size of cell including hundreds of nanoparticles. It is expected that this study could be extended to the multiparticulate nanocomposite systems including polydispersed nanoparticles.

Poly(methyl methacrylate-co-styrene)/Silicate Nanocomposites Synthesized by Multistep Emulsion Polymerization

  • Park, Yeong-Suk;Kim, Yoon-Kyung;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.418-424
    • /
    • 2003
  • Exfoliated poly(methyl methacrylate-co-styrene) [P(MMA-co-ST)]/silicate nanocomposites were synthesized through a multistep emulsion polymerization. The methyl methacrylate monomers were polymerized first and then the styrene monomers were polymerized. The nanocomposites had core-shell structures consisting of PMMA (core) and PS (shell); these structures were confirmed by $^1$H NMR spectroscopy and TEM, respectively. P(MMA-co-ST) copolymers showed two molecular weight profiles and two glass transition temperatures (T$_{g}$) in GPC and DMA measurements. At 30 $^{\circ}C$, the nanocomposites exhibited 83 and 91 % increases in their storage moduli relative to the neat copolymer because the silicate layers were dispersed uniformly in the polymer matrix.x.

In-situ Synthesis of Polyamide-6/POSS Nanocomposites

  • Ramasundaram Subramaniya Pillai;Kim Kap-Jin
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.303-303
    • /
    • 2006
  • In-situ ring opening polymerization of ${\varepsilon}-caprolactum$ was carried out in the presence of aminoethylaminopropylisobutyl POSS and stoichiometric amount of adipic acid. The covalent bond formation of POSS on the polyamide was confirmed by the appearance of FT-IR peak at $1123\;cm^{-1}$ that corresponds to the Si-O stretching of POSS structures. Gradual decrease in melting endotherm peak was observed on loading POSS in PA6/POSS nanocomposites. Sharp increase in intrinsic viscosity was observed upto 2.5 wt % loading POSS in the polyamide 6 nanocomposites. These nanocomposites were further characterized using nuclear magnetic resonance, melt viscosity and X-ray diffraction.

  • PDF

Effect of CNT Diameter on Physical Properties of Styrene-Butadiene Rubber Nanocomposites

  • Park, Young-Soo;Huh, Mong-Young;Kang, Sin-Jae;Yun, Seok-Il;Ahn, Kay-Hyeok
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.320-324
    • /
    • 2009
  • We investigated the effect of diameter and content of carbon nanotubes (CNTs) on the physical properties of styrenebutadiene rubber (SBR)/CNTs nanocomposites. CNTs-reinforced SBR nanocomposites were prepared by the melt mixing process. CNTs with different diameters were synthesized by the chemical vapor deposition method (CVD). In this work, the mechanical property and other physical properties of SBR/CNTS nanocomposites were discussed as a function of the content and diameter of CNTs.

Nanocomposites Based on Polytetrafluoroethylene and Ultrahigh Molecular Weight Polyethylene: A Brief Review

  • Kirillina, Iu.V.;Nikiforov, L.A.;Okhlopkova, A.A.;Sleptsova, S.A.;Yoon, Cheonho;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3411-3420
    • /
    • 2014
  • Deficiencies in wear and frost resistance as well as mechanical strength constitute the main causes of equipment failure under the harsh climatic conditions of the Earth's polar regions. To improve the properties of the materials used in this equipment, nanoparticle composites have been prepared from clays such as kaolinite, hectorite, and montmorillonite in combination with polytetrafluoroethylene (PTFE) or ultrahigh molecular weight polyethylene (UHMWPE). A number of techniques have been proposed to disperse silicate particles in PTFE or UHMWPE polymer matrices, and several successful processes have even been widely applied. Polymer nanocomposites that exhibit enhanced mechanical and thermal properties are promising materials for replacing metals and glass in the equipment intended for Arctic use. In this article, we will review PTFE- and UHMWPE-based layered silicate nanocomposites.

Synthesis and Characterization of Graphene Based Unsaturated Polyester Resin Composites

  • Swain, Sarojini
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Graphene-based polymer nanocomposites are very promising candidates for new high-performance materials that offer improved mechanical, barrier, thermal and electrical properties. Herein, an approach is presented to improve the mechanical, thermal and electrical properties of unsaturated polyester resin (UPR) by using graphene nano sheets (GNS). The extent of dispersion of GNS into the polymer matrix was also observed by using the scanning electron microscopy (SEM) which indicated homogeneous dispersion of GNS through the UPR matrix and strong interfacial adhesion between the GNS and UPR matrix were achieved in the UPR composite, which enhanced the mechanical properties. The tensile strength of the nanocomposites improved at a tune of 52% at a GNS concentration of 0.05%. Again the flexural strength also increased around 92% at a GNS concentration of 0.05%. Similarly the thermal properties and the electrical properties for the nanocomposites were also improved as evidenced from the differential scanning caloriemetry (DSC) and dielectric strength measurement.

A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance (Kapitza 열저항이 존재하는 나노복합재의 열전도 특성 예측을 위한 순차적 멀티스케일 균질화 해석기법에 관한 연구)

  • Shin, Hyunseong;Yang, Seunghwa;Yu, Suyoung;Chang, Seongmin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • In this study, a sequential multiscale homogenization method to characterize the effective thermal conductivity of nano particulate polymer nanocomposites is proposed through a molecular dynamics(MD) simulations and a finite element-based homogenization method. The thermal conductivity of the nanocomposites embedding different-sized nanoparticles at a fixed volume fraction of 5.8% are obtained from MD simulations. Due to the Kapitza thermal resistance, the thermal conductivity of the nanocomposites decreases as the size of the embedded nanoparticle decreases. In order to describe the nanoparticle size effect using the homogenization method with accuracy, the Kapitza interface in which the temperature discontinuity condition appears and the effective interphase zone formed by highly densified matrix polymer are modeled as independent phases that constitutes the nanocomposites microstructure, thus, the overall nanocomposites domain is modeled as a four-phase structure consists of the nanoparticle, Kapitza interface, effective interphase, and polymer matrix. The thermal conductivity of the effective interphase is inversely predicted from the thermal conductivity of the nanocomposites through the multiscale homogenization method, then, exponentially fitted to a function of the particle radius. Using the multiscale homogenization method, the thermal conductivities of the nanocomposites at various particle radii and volume fractions are obtained, and parametric studies are conducted to examine the effect of the effective interphase on the overall thermal conductivity of the nanocomposites.

Interface control in polymer/clay nanocomposites

  • Lee, Sang-Soo;Park, Min;Kim, Junkyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.11-15
    • /
    • 2003
  • In order to suppress a repulsive interfacial energy between hydrophilic clay and hydrophobic polymer matrix in preparing a polymer/clay nanocomposite, a third component of amphiphilic nature such as poly($\varepsilon$-caprolactone) (PCL) was introduced into the model system of styrene-acrylonitrile copolymers (SAN)/Na-montmorillonite. Once $\varepsilon$-caprolactone was polymerized in the presence of Na-rnontmorillonite, the successful ring-opening polymerization of $\varepsilon$-caprolactone and the well-developed exfoliated structure of PCL/Na-montmorillonite mixture were confirmed, Thereafter, SAN was melt-mixed with PCL/Na-montmorillonite nanocomposite, which resulted in that SAN matrix and PCL fraction were completely miscible to form homogeneous mixture with retention of the exfoliated state of Na-montmorillonite, exhibiting that PCL effectively stabilizes the repulsive polymer/clay interface and contributes the improvement of mechanical properties of the nanocomposites.

  • PDF

Effect of Surfactant on Rheological and Electrical Properties of Latex-Blended Polystyrene/Single-Walled Carbon Nanotube Nanocomposites (계면활성제가 라텍스 블렌딩 폴리스티렌/단일벽 탄소나노튜브 나노복합재료의 유변학적, 전기적 물성에 미치는 영향)

  • Kang, Myung-Hwan;Noh, Won-Jin;Woo, Dong-Kyun;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.364-371
    • /
    • 2012
  • Polystyrene/single-walled carbon nanotube (PS/SWCNT) nanocomposites were prepared by latex technology and the effect of surfactant (SDS) on nanotube dispersion, rheological and electrical properties was investigated. The nanocomposites were prepared through freeze-drying after mixing PS particles and aqueous SWCNT/SDS suspension. As the SDS content increased, the storage modulus and complex viscosity of the nanocomposites were increased due to enhanced dispersion of nanotubes, but if the content excessively increased, the modulus and viscosity began to decrease due to low molecular weight of SDS. The electrical conductivity sharply increased with the addition of SDS, and then did not show significant changes. This result is speculated to be the competition between the increased dispersion of nanotubes and the deterioration of electrical conductivity by SDS adsorption. An optimal ratio of SDS to SWCNT for improving electrical conductivity and end-use properties was 2. With this ratio, the electrical percolation threshold of SWCNT was less than 1 wt%.