• 제목/요약/키워드: polymer nanocomposites

검색결과 372건 처리시간 0.022초

Interfacial Interaction in Silica or Silsesquioxane Containing Polyimide Nanohybrids

  • Ha, Chang-Sik
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.204-204
    • /
    • 2006
  • The interfacial interaction along with microstructure and some properties of the polyimide(PI)/silica or polyimide/silsesquioxane hybrid nanocomposites will be discussed with reviewing recent publications including our own works. Poly(vinyl silsesquioxane) (PVSSQ), aminosilane (APS), and titania can effectively play vital roles to compatibilize the PI/silica hybrid composites by enhancing interfacial interaction or reducing agglomeration of large domains, which helps the formation of nanocomposites for the PI/silica hybrid system.

  • PDF

라텍스 기법에 의한 폴리스티렌/그래핀 나노필러 나노복합재료의 제조 및 물성 (Preparation and Properties of Polystyrene/Graphene Nanofiller Nanocomposites via Latex Technology)

  • 염효열;나효열;정대원;이성재
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.468-474
    • /
    • 2015
  • 고분자 재료에 전기 전도성을 부여하기 위해 그래핀 기반의 나노필러를 도입하여 전도성 나노복합재료를 제조하였다. 그래핀 나노필러는 폴리스티렌(PS) 입자와 수계 분산이 용이하도록 산화 그래핀(GO) 및 poly(styrene sulfonate)가 도포된 환원된 산화 그래핀(PSS-RGO)을 사용하였다. GO는 흑연으로부터 modified Hummers 방법으로 합성하였으며, PSS-RGO는 GO가 분산된 PSS 용액을 hydrazine monohydrate로 환원시켜 제조하였다. 라텍스 기법으로 제조한 PS/GO 및 PS/PSS-RGO 나노복합재료의 모폴로지, 유변물성 및 전기적 물성을 고찰하였다. GO 및 PSS-RGO 나노필러는 PS 매트릭스 내에 잘 분산된 모폴로지를 보여 주었다. 그래핀 나노필러 함량에 따른 유변학적, 전기적 임계점은 GO가 0.28, 0.51 wt%로 나타났고 PSS-RGO는 0.50, 1.01 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전기 전도도를 보여주는 이유는 성형시의 열처리에 의해 GO가 환원되어 전기적 물성을 부분적으로 회복했기 때문으로 판단된다.

Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질 (Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials)

  • 김석;황은주;이재락;김형일;박수진
    • 폴리머
    • /
    • 제31권4호
    • /
    • pp.297-301
    • /
    • 2007
  • 본 연구에서는 poly(ethylene oxide) (PEO), 가소제인 ethylene carbonate(EC), 리튬염인 $LiClO_4$ 그리고 $Na^+-MMT/organic$ MMT를 이용하여 고분자/층상 실리카 나노복합재료(polymer/(layered silicate) nanocomposites, PLSN)를 제조하였으며, organic MMT의 첨가에 따른 고분자 매트릭스에 미치는 영향을 이온전도도를 통하여 관찰하였다. 리튬전지의 전해질로서의 응용을 위해, $Na^+$를 양이온으로 갖는 순수한 MMT($Na^+-MMT$)를 유기화한 nanoclay(organic-MMT)를 사용하였다. 그 결과, 층간 거리 및 소수성이 증가하며 이와 같은 특성은 PEO와의 나노복합체를 형성할 때 MMT의 박리 거동에 영향을 미치는 것을 확인할 수 있었다. 또한, 이온전도도에서는 organic MMT가 순수한 $Na^+-MMT$보다 우수함을 나타내었으며, methyl dihydrogenated tallow ammonium으로 개질된 MMT(MMT-2OA)를 첨가하였을 때 가장 높은 이온전도도를 보였다.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

New Polymerization using Microwave Radiation

  • Lee, Jae-Heung;Kim, Yong-Seok;Hong, Young-Taik;Jung, Hyun-Min;Oh, Hyoung-Suk
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.213-213
    • /
    • 2006
  • High molecular weight of polycarbonate(PC) and well dispersed PC/MMT nanocomposites were successfully prepared through the novel technology, microwave solid-state polymerization. In our studies, the microwave irradiation is more effective than conventional oil-bath heating on achieving the high molecular weight and uniform nanocomposites. Using the polycarbonate prepolymer made it possible to intercalate the short chains into the galleries of MMT more easily. And it was observed that prepared nanocomposites by microwave solid-state polymerization have more uniform dispersion of silicate of MMT into the polymer matrix than by oil heating.

  • PDF

Preparation of Nylon 6/ Clay Nanocomposites by Reactive Extrusion

  • Soonho Lim;Park, Jung-Hoon;Kim, Woo-Nyeon;Lee, Sang-Soo;Kim, Junkyung
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.16-20
    • /
    • 2003
  • As the preliminary works for the preparation of exfoliated nanocomposites by reactive extrusion (REX) the modified anionic polymerization proceeded in a flask using an $\varepsilon$-caprolactam, catalyst, initiator, and clay. Polymerization methods were classified with a variation of the clay adding time. Intercalations mechanism of clay layers was investigated by measuring the WAXD peaks of clay with polymerization. In the preparation of nanocomposites, the molecular weight of nylon 6 was affected by the clay content. From the mechanical property measurement, improved properties were obtained in comparison to the neat nylon 6, and these properties were also affected by the molecular weight.

  • PDF

MWNT를 이용한 나노복합체에 대한 기초적 연구 (Basic Study on the Nonocomposites by using the MWNT(Multiwalled Nanotube))

  • 강용구;권현규;최성대;노인규
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.104-109
    • /
    • 2009
  • In this paper, polymer nanocomposites were fabricated by mixing fire-resistant and high pseudoplastic Nylon 6,6 with MWNT(Multiwalled Nanotube), which has mechanical, electrical, and heat stable properties. The experiments were performed in order to investigate their mechanical and electrical properties depending on the level of MWNT and the presence of acid treatment on Nylon 6.6. Morphology of polymer nanocomposites was observed using Scanning Electron Microscopy technique. The results indicate that the polymer nanocomposites have the best mechanical and electrical properties in the optimal conditions of Nylon 6.6 and MWNT(10wt%).

  • PDF

Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs

  • Lee, Hae-Hyoung;Shin, Ueon-Sang;Jin, Guang-Zhen;Kim, Hae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.157-161
    • /
    • 2011
  • For the fabrication of multifunctional biopolymer nanocomposites in the combination of carbon nanotubes (CNTs), recently increasing attention has been paid to an effective homogenization of CNTs within polymer matrices and a fine tuning of the concentration. We developed an efficient method to produce homogeneous CNT-polycaprolactone nanocomposites with various and controllable CNT concentrations using an ionically-modified multi-walled CNT, MWCNT-Cl. The modified MWCNTs could be homogeneously dispersed in tetrahydrofuran (THF). Polycaprolactone (PCL) as a biodegradable and biocompatible polymer was smoothly dissolved in the homogeneous MWCNT-Cl/THF solution without agglomeration of MWCNT-Cl. The physicochemical and mechanical properties of the resultant nanocomposites were examined and the biological usefulness was briefly assessed.

poly( $\varepsilon$ -caprolactone)/organoclay 나노복합체에 있어 용융 박리에 수지 점도가 미치는 영향 (Effect of matrix viscosity on the melt exfoliation of clay in preparation of poly( $\varepsilon$ -caprolactone)/organoclay nanocomposites)

  • Ko, Moon-Bae;Park, Jee-kwon;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.440-443
    • /
    • 2001
  • Polymer/layered silicate nanocomposites have recently received considerable attention from both academia and industry as an effective way to overcome the shortcomings of conventional polymer. When the silicate layers are exfoliated and randomly distributed in polymer matrix, the nanocomposites exhibit improved mechanical, thermal and barrier properties. (omitted)

  • PDF