• Title/Summary/Keyword: polymer inclusion membrane

Search Result 13, Processing Time 0.021 seconds

Debittering of Citrus Products Using ${\beta}-Cyclodextrin$ Polymer and Ultrafiltration Process (${\beta}-Cyclodextrin$ 중합체와 한외여과 공정을 이용한 감귤류의 쓴맛 성분 제거)

  • Woo, Gun-Jo;Ha, Seung-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.302-308
    • /
    • 1997
  • ${\beta}-Cyclodextrin\;({\beta}-CD)$ polymers were prepared using epichlorohydrin as a cross linking agent. The polymers were separated into ${\beta}-CD$ soluble polymer $({\beta}-CD\;SP)$ and ${\beta}-CD$ insoluble polymer $({\beta}-CD\;ISP)$ on a 10,000 molecular weight cut-off membrane (YM 10). Optimum separation conditions in the YM 10 were: transmembrane pressure 51.7 kPa, separation temperature $35^{\circ}C$, and volume concentration ratio 10. The flux was $0.025\;mL/cm^{2}/min$ under the optimum conditions. Gel permeation chromatography indicated that ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$ had a degree of polymerization of $2{\sim}8$ and over 10, respectively. The formation of an inclusion complex with hydrophobic compounds such as 4-dimethylaminoazobenzene, methyl red, and naringin was compared among ${\beta}-CD,\;{\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. The molar absorptivity for the two chromatic compounds was increased and the absorption peak was shifted in the presence of ${\beta}-CD$ polymers. Naringin, the principal flavonoid bitter tasting component of citrus fruit, had a low water solubility. The solubility of naringin was increased through the formation of an inclusion complex with ${\beta}-CD$ polymers. There was no significant difference in the formation of an inclusion complex between ${\beta}-CD\;SP\;and\;{\beta}-CD\;ISP$. Reduction of the bitter components from citrus products was shown to be possible when employing ${\beta}-CD\;SP$, while the usage of ${\beta}-CD$ monomer has been limited due to the low water solubility.

  • PDF

Controlling the Morphology of Polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) Membranes Via Phase Inversion Method (상전이법을 이용한 P(VDF-co-HFP) 분리막 구조제어)

  • Song, Ye Jin;Kim, Jong Hoo;Kim, Ye Som;Kim, Sang Deuk;Cho, Young Hoon;Park, Ho Sik;Nam, Seung Eun;Park, You In;Son, Eun Ho;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2018
  • In this work, the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes were systemically investigated using phase inversion technique, to target membrane contactor applications. As the presence of macrovoids degrade the mechanical integrity of the membranes and jeopardize the long-term stability of membrane contactor processes (e.g. wetting), a wide range of dope compositions and casting conditions was studied to eliminate the undesired macrovoids. The type of solvent had significant effect on the membrane morphology, and the observed morphology were correlated to the physical properties of the solvent and solvent-polymer interactions. In addition, to fabricate macrovoid-free structure, the effects of different coagulation temperatures, inclusion of additives, and addition of nonsolvents were investigated. Due to the slow crystallization rate of P(VDF-co-HFP) polymer, it was found that obtaining porous membrane without macrovoids is difficult using only nonsolvent-induced phase separation method (NIPS). However, combined other phase inversion methods such as evaporation-induced phase separation (EIPS) and vapor-induced phase separation (VIPS), the desired membrane morphology can be obtained without any macrovoids.

Charge-Discharge Characteristics of Lithium Metal Polymer Battery Adopting PVdF-HFP/(SiO2, TiO2) Polymer Electrolytes Prepared by Phase Inversion Technique (상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성)

  • Kim, Jin-Chul;Kim, Kwang-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.131-136
    • /
    • 2008
  • Silica- or titania-filled poly (vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes were prepared by phase inversion technique using N-methyl-2-pyrrolidone and dimethyl acetamide as solvent and water as non-solvent. The polymer electrolytes were adopted to the lithium metal polymer battery using high-capacity cathode $Li[Ni_{0.15}Co_{0.10}Li_{0.20}Mn_{0.55}]O_2$ and lithium metal anode. After the repeated charge-discharge test for the cell, it was proved that the cell adopting the polymer electrolyte based on the phase-inversion membrane containing 40~50 wt% silica showed the highest discharge capacity (180 mAh/g) until 80th cycle and then abrupt capacity fade was just followed. The capacity fade might be due to the deposition of lithium dendrite on the polymer electrolyte, in which the capacity retention was no longer sustainable.