• Title/Summary/Keyword: polymer fibers

Search Result 577, Processing Time 0.327 seconds

Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior (사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.

Polymeric digital optical switch based on photobleached waveguides (광표백 폴리머 광도파로를 이용한 디지탈 광스위치)

  • 이상신;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.414-418
    • /
    • 1996
  • An electro-optic polymer digital optical switch was fabricated by using a photobleached waveguide and a self-aligned electrode. It features wavelength insensitive operation, fabrication tolerance and flexible design. And its possible advantages include low coupling losses to the fibers and wide bandwidths. For improving its switching performance, the guided mode profiles of the photobleached waveguides were controlled by photobleaching times to achieve optimized coupling in the branch. And the self-aligned electrode was employed to achieve both efficient overlap of the optical and electric fields and easy introduction of the adiabatically tapered electrodes. The measured crosstalks were better than -21dB at 1.32 ${\mu}{\textrm}{m}$ and 1.55 ${\mu}{\textrm}{m}$, and the extinction ratios of each output port were also more than 20 dB.

  • PDF

The Shape of Polymers Resulted Condensation in the Mixed Si(OC_2H_5)_4 and Zr(O-nC_3H_7)_4$4 Solutions (Si(OC_2H_5)_4와 Zr(O-nC_3H_7)_4$ 혼합용액의 중합반응에 따른 고분자의 형상)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.220-226
    • /
    • 1994
  • The hydrolysis and condensation reactions in the mixed alkoxide solutions of Si(OC2H5)4 and Zr(O-nC3H7)4 with various water contents (1, 2, 4, and 8 in molar ratio to alkoxide, r) and catalysts were examined by rheological measurements and the number average molecular weight in order to explain the shape of the polymer in the mixed alkoxide solutions. It was found that fibers could be drawn in the viscosity range of 1∼100P from the acid-catalyzed solutions with lower water contents of the mole ratio H2O/alkoxide, r 2. On the other hand, crack free bulk gel was formed from the acid-catalyzed solutions including a large amount of water (r 4), and the base-catalyzed solutions. The relation between the intrinsic viscosity [{{{{ eta }}] and the number average molecular weight n, namely [{{{{ eta }}]=Knα, has shown that the acid-catalyzed spinnable solutions (r=1 and 2) have linear polymers and the exponent α's are about 0.56 and 0.81, whereas non-spinnable solutions (r=4 and 8) have three dimensional network polymers or spherical particles and the exponent α's are 0.41∼0.51 and 0.35.

  • PDF

Effect of Anchorage Number on Behavior of Reinforced Concrete Beams Strengthened with Glass Fiber Plates

  • Kaya, Mustafa;Kankal, Zeynel Cagdas
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.415-425
    • /
    • 2015
  • Reinforced concrete beams with insufficient shear reinforcement were strengthened using glass fiber reinforced polymer (GFRP) plates. In the study, the effect of the number of bolts on the load capacity, energy dissipation, and stiffness of reinforced concrete beams were investigated by using anchor bolt of different numbers. Three strengthened with GFRP specimens, one flexural reference specimen designed in accordance to Regulation on Buildings Constructed in Disaster Areas rules, and one shear reinforcement insufficient reference specimen was tested. Anchorage was made on the surfaces of the beams in strengthened specimens using 2, 3 and 4 bolts respectively. All beams were tested under monotonic loads. Results obtained from the tests of strengthened concrete beams were compared with the result of good flexural reference specimen. The beam in which 4 bolts were used in adhering GFRP plates on beam surfaces carried approximately equal loads with the beam named as a flexural reference. The amount of energy dissipated by strengthened DE5 specimen was 96 % of the amount of energy dissipated by DE1 reference specimen. Strengthened DE5 specimen initial stiffness equal to DE1 reference specimen initial stiffness, but strengthened DE5 specimen yield stiffness about 4 % lower than DE1 reference specimen yield stiffness. Also, DE5 specimen exhibited ductile behavior and was fractured due to bending fracture. Upon the increase of the number of anchorages used in a strengthening collapsing manner of test specimens changed and load capacity and ductility thereof increased.

Interchange Reaction Kinetics and Sequence Distribution of Liquid Crystalline Poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate)

  • Rhee, Do-Mook;Ha, Wan-Shik;Youk, Ji-Ho;Yoo, Dong-Il
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.86-91
    • /
    • 2001
  • Liquid crystalline (LC) poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate) [copoly(ET/CPT)] was prepared using poly(ethylene terephthalate) (PET) as a flexible spacer, terephthalic acid (TPA), and chlorohydroquinone diacetate (CHQDA). All reactions involved in the copolymerization were investigated using some model compounds: TAP was used for acidolysis, diphenylethyl terephthalate (DPET) for interchange reaction between PET chains, and 야-o-chlorophenyl terephthalate (DOCT) and di-m-chlorophenyl terephthalate (DMCT) for interchange reaction between PET and rigid rodlike segments. Activation energies obtained for the acidolysis of PET with TPA and for interchange reaction of PET with DPET, DOCT, and DMCT were 19.8 kcal/mol, 26.5 kcal/mole, and 45.9 kcal/mole, respectively. This result supports that the copolymerization proceeds through the acidolysis of PET with TPA first and subsequent polycondensation between carboxyl end group and CHQDA or acetyl end group, which is formed from the reaction of CHQDA and TPA. Also, it was found that ester-interchange reaction can be influenced by the steric hindrance. Copoly(ET/CPT)s obtained has ethylene acetate end groups formed from acetic acid hydroxy ethylene end groups and showed almost the random sequence distribution for all compositions.

  • PDF

Preparation of High Molecular Weight Atactic Poly(vinyl alcohol) by Photo-induced Bulk Polymerization of Vinyl Acetate

  • Lyoo, Won-Seok;Ha, Wan-Shik
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.108-115
    • /
    • 2001
  • Vinyl acetate was polymerized in ultraviolet-ray initiated bulk system at low temperatures using 2,2-azobis(2,4-dimethylvaleronitrile) (ADMVN) or 2,2-azobis(isobutyronitrile) (AIBN) as the photoinitiator, respectively. High molecular weight (HMW) poly(vinyl alcohol) (PVA) having number-average degree of polymerization ($P_n$) of 3,900-7,800 and syndiotactic diad (S-diad) content of 52.5-54.0% could be prepared by complete saponification of synthesized linear poly(vinyl acetate) (PVAc) having $P_n$ 5,900-9,400 obtained at conversion of below 30%. $P_n$ of PVA using ADMVN was larger than that of PVA using AIBN. On the other hand, conversion of the former was smaller than that of the latter, and it was found that the initiation rate of the ADMVN was lower than that of AIBN. This could be explained by a fact that the rate of photolysis of AIBN is faster than that of ADMVN due to the higher quantum yield or dissociation rate constant of AIBN than that of ADMVN. The $P_n$, syndiotacticity, and whiteness of PVA from PVAc polymerized at lower temperatures were superior to those of PVA from PVAc polymerized at higher temperatures.

  • PDF

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Computational Design of Electrode Networks for Preferentially Aligned Short Fiber Composite Component Fabrication via Dielectrophoresis

  • Srisawadi, Sasitorn;Cormier, Denis R.;Harrysson, Ola L.A.;Modak, Sayantan
    • International Journal of CAD/CAM
    • /
    • v.12 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • Finite Element Analysis (FEA) is often used to identify local stress/strain concentrations where a component is likely to fail. In order to reduce the degree of strain concentration, component thickness can be increased in those regions, or a stronger material can be used. In short fiber reinforced composite materials, strength and stiffness can be increased through proper fiber alignment. The field-aided microtailoring (FAiMTa) process is one promising method for doing this. FAiMTa uses principles of dielectrophoresis to preferentially align particles or fibers within a matrix. To achieve the preferred fiber orientation, an interdigitated electrode network must be integrated into the mold halves which can be fabricated by additive manufacturing (AM) processes. However, the process of determining the preferred fiber arrangements and electrode locations can be very challenging. This paper presents algorithms to semi-automate the interdigitated electrode design process. The algorithm has been implemented in the Solidworks CAD system and is demonstrated in this paper.

Utilization of Metasequoia(Metasequoia glyptostroboides) Cone as a New Natural Dye Resource(3): Dyeing Properties and Antimicrobial Functionality of Wool Fiber (새로운 천연염재로서 메타쉐콰이어 열매의 활용(3): 모섬유의 염색성과 항균성을 중심으로)

  • Yan, Jun;Yoo, Dong Il;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.208-215
    • /
    • 2018
  • The objective was to investigate the efficacy of Metasequoia(Metasequoia glyptostroboides) cone colorants as a new functional dye for wool fiber. Effects of dyeing conditions and mordanting on dye uptake, color change, and colorfastness were investigated for wool fiber. Compared with cotton and silk fibers, wool fiber showed better affinity for the Metasequoia cone colorants. Fe and Cu mordants improved dye uptake, and mordanting did not change the color of dyed fabric with YR Munsell color. Colorfastness to rubbing and washing was as good as grade 4, whereas lightfastness of the dyed fabrics was above grade 3. Antimicrobial activity of the colorants was very high 99.3% of reduction rate toward S. aureus. It was confirmed that Metasequoia cone colorants can be utilized as a new functional natural dye for wool fiber. In addition, considering its high antimicrobial functionality it could be applied to cosmetics and food.

The R & D of SiC Fiber Reinforced Composites for Energy and Transportation Applications

  • Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.5-13
    • /
    • 2006
  • Based on the inventions of continuous ceramic fibers, such as C, SiC, $Al_2O_3$ etc., by polymer precursor driven methods, there have been many efforts to fabricate ceramic continuous fiber reinforced composite materials with metals and ceramics matrices. The main purpose of the R & D efforts has been to produce materials for severe environments, including advanced energy systems, advanced transportation systems. The efforts have been started from the R & D of metal matrix composite materials and now the strong emphasis on ceramic matrix composites R & D can be recognized. This paper provides a brief review about the national efforts to establish advanced composite materials for future industries starting from mid 70s. C/Al and SiC/Al are the typical examples to be applied transportation systems and energy systems. The excellences in specific strength and overall mechanical properties, the excellences in environmental resistance make those materials as potential materials for advanced ocean construction and marine transportation systems. About the recent progress in ceramic fiber reinforced ceramic composites, advanced SiC/SiC composites including NITE-SiC/SiC will be introduced and the present status will be introduced.

  • PDF