• Title/Summary/Keyword: polymer fibers

Search Result 578, Processing Time 0.024 seconds

Electrospinning Fabrication of Juniperus Chinensis Extracts Loaded PU Nanoweb (전기방사를 이용한 향나무 추출물 함유 PU 나노웹 제조)

  • Kim, Jeong-Hwa;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.19 no.3
    • /
    • pp.43-50
    • /
    • 2016
  • The uniform nanofibers of polyurethane with different contents of Juniperus Chinensis extracts were successfully prepared by electrospinning method. Polyurethane is widely used as functional polymers in the industrials, medical field as their properties can be tailor-made by adjusting their compositions. Juniperus Chinensis has been reported for anti-tumor, anti-bacterial, anti-fungal, and anti-viral activities. PU/Juniperus Chinensis extracts composite nanofibers were produced at different Juniperus Chinensis extracts concentrations (0.25, 0.5, 1, 1.5wt.%). The effects of the major parameters in electrospinning process such as tip to collector distance (TCD), voltage, polymer concentration on the average diameter of electrospun nanoweb were investigated. As results, 12wt% PU solution concentration, 8kV applied voltage and 15cm tip to collector distance were identified as optimum conditions for electrospinning the composite nanofibers. The diameter and morphology of the nanocomposite nanofibers were confirmed by a scanning electron microscopy (SEM). The resulting fibers exhibited a uniform diameter ranging from 435nm~547nm. It has been found that the average diameters of fibers decreased by the adding of Juniperus Chinensis extracts. These nanowebs can be used for medical materials, protective clothing, and antimicrobial filters.

Improvement of Paper Strength using Pretreated Precipitated Calcium Carbonate (PCC) (종이의 강도향상을 위한 경질탄산칼슘(PCC) 전처리에 대한 연구)

  • Kim, Chul-Hwan;Lee, Ji-Young;Gwak, Hye-Joeng;Chung, Ho-Kyung;Back, Kyung-Kil;Lee, Hui-Jin;Kim, Sung-Ho;Kang, Ha-Ryoun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • Increasing ash content of the paper is one of the most effective methods for saving raw materials and steam consumption and improving optical properties and better print quality. However, the increase of filler loading or filler content using a conventional wet end system is limited due to severe loss in strength properties, affecting runnability and product quality. This is because the filler has no ability to make bonding with cellulosic fibers. Therefore, if the technology to give filler the bonding ability is developed, the ash content of the paper can be increased more than ever. This study was carried out to modify PCC by coating its surface with starch contributing to better bonding with fibers. To prepare the modified PCC, cationic starch was selected as a polymer and then pretreatment was done by mixing PCC and cationic starch. Consequently, the pretreated PCC contributed to higher tensile strength, stiffness and opacity than the conventional filler, such as GCC and untreated PCC. However, CIE whiteness and ISO brightness decreased slightly compared to conventional fillers.

Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete (섬유보강 콘크리트에 묻힌 GFRP 보강근의 부착거동에 대한 섬유영향 평가)

  • Kang, Ji-Eun;Kim, Byoung-Ill;Park, Ji-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • Though steel reinforcing bars are the most widely used tensile reinforcement, corrosion problems are encountered due to the exposure to aggressive environments. As an alternative material to steel, the fiber reinforced polymers have been used as reinforcement in concrete structures. However, bond strength of FRP rebar is relatively low compared to steel rebar. It has been reported that fibers in matrix can resist crack growth, propagation and finally result in an increase of toughness. In this study, high-strength concrete reinforced with structural fibers was produced to enhance interfacial bond behavior between FRP rebar and concrete matrix. The interfacial bond-behaviors were investigated from a direct pullout test. The test variables were surface conditions of GFRP bars and fiber types. Total of 54 pullout specimens with three different types of bars were cast for bond strength tests. The bond strength-slip responses and resistance of the bond failure were evaluated. The test results showed that the bond strength and toughness increased according to the increased fiber volume.

Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet (방사선 차폐시트의 적층 구조와 섬유 코팅의 융합적인 현상이 인장강도에 미치는 영향)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.83-88
    • /
    • 2020
  • Recently, radiation shielding sheets made of eco-friendly materials have been widely used in medical institutions. The shielding sheet is processed into a solid form by thermoforming by mixing a shielding material with a polymer material. The base is resin-based and has a limit in tensile strength, and for this purpose, fibers such as non-woven fabrics are used on the surface. The shielding sheet process technology has a problem in that the tensile strength rapidly decreases when the content of the shielding material is increased to increase the shielding performance. In order to improve this, this study intends to compare and evaluate the method of laminating and coating the fibers in the sheet process. In comparison of the three types of sheets, there was no difference in shielding performance between the fiber-coated sheet and the compression sheet, but there was a large difference in tensile strength.

Preparation and Properties of Glass Fiber-Reinforced Poly(olefin ketone) Composites (유리섬유 강화 폴리올레핀케톤 복합재료의 제조 및 특성에 대한 연구)

  • Cho, Hae-Souk;Chung, Jae-Seung;Baek, Seung-Jo;Choi, Won Jae;Kim, Jin-joo;Yoon, Sung Kyun;Lee, Jong-Chan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.339-343
    • /
    • 2012
  • Poly(olefin ketone) terpolymer having excellent mechanical properties was synthesized and composite materials of poly(olefin ketone) containing polyurethane/amino silane functionalized glass fibers were prepared. The compatibilities between the functionalized glass fiber and the polymer were characterized by observing the fracture surfaces of the composites using scanning electron microscopy (SEM). Mechanical properties of composites with different contents, diameters, lengths, and binders of glass fibers were also studied using universal testing machine (UTM). The introduction of suitably functionalized glass fiber into the poly(olefin ketone) produces composite materials having excellent mechanical properties and they are very promising alternative materials for the engineering plastic applications.

Rheological and Thermal Properties of Acrylonitrile-Acrylamide Copolymers: Influence of Polymerization Temperature

  • Wu Xueping;Lu Chunxiang;Wu Gangping;Zhang Rui;Ling Licheng
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 2005
  • An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSC-TG) analysis, respectively. When the polymerization temperature increased from $41^{\circ}C\;to\;65^{\circ}C$, the molecular weight $(\bar{M}_w)$ of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from $18\%\;to\;63\%$, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and $\bar{M}_w$ was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from $30^{\circ}C\;to\;65^{\circ}C$. This suggests the dependence of viscosity upon $\bar{M}_w$ is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.

Effects of Isothermal Stabilization Process and Ultrasonic Cleaning on the Characteristics of Rayon Fabrics (레이온직물의 특성에 미치는 등온 안정화공정 및 초음파세척의 영향)

  • Cho, Chaewook;Cho, Donghwan;Park, Jong Kyoo;Lee, Jae Yeol
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2013
  • Cellulose-based rayon fibers or fabrics can be thermally decomposed very fast within a narrow temperature window during stabilization process. Therefore the stabilization stage is critically important for producing rayon-based carbon fibers. Consequently, in the present study the effects of isothermal stabilization and ultrasonic cleaning on the weight loss, chemical composition, microstructure, and fabric texture of cellulose-based rayon fabrics were explored. The temperature of the isothermal stabilization process performed in the range of $200{\sim}240^{\circ}C$ influenced the processing time, carbon and oxygen contents, cellulose structural change, and fabric texture. The ultrasonic cleaning, which was conducted prior to the stabilization process, played a role in shortening the stabilization time, increasing the carbon contents, decreasing the oxygen contents, and changing the XRD pattern. Also, it was considered that the ultrasonic cleaning contributed to retarding the weight loss, to reducing the thermal shrinkage, and further to reducing the fast physical change of rayon fabrics.

Development of Nano Ceramic Structures for HEPA Type Breathing Wall (HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Kim, Gil-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_4/N_2$ (폴리이미드와 폴리이써설폰 분리막을 이용한 $CH_4/N_2$의 투과선택도 특성)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Lee, Gang-Woo;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.498-504
    • /
    • 2011
  • In this research, hollow fiber membranes were used in order to investigate to permeation and selectivity of the $CH_4$ and $N_2$. Polyimide and polyethersulfone hollow fiber membrane were prepared by the dry-wet phase inversion method and the module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy (SEM) studies showed that the produced fibers typically had an asymmetric structure. The permeance of $CH_4$ and $N_2$ were increased with pressure and temperature. However, the selectivity was decreased with increasing temperature. The permeances of $CH_4$ and $N_2$ were decreased with increasing the air gap and the effect of post-treatment on membrane showed the increase in permeance up to 3.2~7.0 times.

Fire Resistance Performance of High Strength Concrete with Fiber Types (섬유 종류에 따른 고강도 콘크리트의 내화성능에 관한 실험적 연구)

  • Kim, Jeong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.223-229
    • /
    • 2014
  • In this study, the fire resistance of high strength concrete with organic fibers and polymer powder (PW) was investigated. Two types of the specimens of ${\phi}100{\times}200mm$ and $300{\times}300{\times}600mm$ sizes were prepared. As a result of the test, it was found that the fiber-to-PW mixing ratio of 1:1 achieved the highest fluidity. Further, it was found that the mixing ratios of PP 0.05% + PW 0.05%, PNY 0.05% + PW 0.05% was sufficient to protect the high strength concrete from spalling. For the mock-up specimens of $300{\times}300{\times}600mm$ size, if the required amounts of fibers were added in the concrete. the concrete spalling was resisted. Likewise, in the case of the polymix (PM) together with PW, all the tested specimens were satisfactory for fire resistance performance.