• Title/Summary/Keyword: polymer electrolytes membrane

검색결과 40건 처리시간 0.292초

촉진수송 및 태양전지용 분리막 (Polymer Electrolytes and their Application to Solar Cells and Separation Membranes)

  • 강용수
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 첨단 분리막 연구동향
    • /
    • pp.13-35
    • /
    • 2004
  • Metal Complexes in Macromolecules Applications of Polymer Electrolyte Membranes Facilitated Transport in Solid State Roles of Electrolytes in Solar Cells - Electrolytes :ㆍI- and $I_3$-conductor ㆍelectron barrier or hole conductor ㆍelectrochemical redox reaction media ㆍinterfacial contactor for dye, $TiO_2$ and electrode ㆍmechanical separator (omitted)

  • PDF

염료감응 태양전지용 고분자 전해질막의 총설 (Review on Polymer Electrolyte Membranes for Dye-sensitized Solar Cells)

  • 이재훈;박철훈;이창수;김종학
    • 멤브레인
    • /
    • 제29권2호
    • /
    • pp.80-87
    • /
    • 2019
  • 염료감응형 태양전지는 지속 가능한 에너지원으로서 많은 관심을 받고 있다. 염료감응형 태양전지의 효율과 장기 안정성은 전극 물질과 전해질에 의해 크게 영향을 받는데 본 총설에서는 전해질에 초점을 두어 서술하고자 한다. 고분자 전해질막은 염료감응형 태양전지에서 기존의 액체 전해질을 대체하기 위한 대안으로 제시되어 왔다. 기존의 액체 전해질은 높은 효율을 나타낼 수 있지만 장기적인 안정성 문제와 누액 문제로 인해 고분자 전해질막에 관한 관심은 지속적으로 증가하고 있으며 매년 이와 관련된 논문들이 활발히 보고되고 있다. 본 총설은 염료감응형 태양전지를 위한 고분자 전해질막의 개념과 개발에 대한 간단한 설명을 다루고 있으며 고분자 매트릭스의 개질, 유-무기 가소제 및 이온성 액체와 같은 첨가제의 도입에 따른 염료감응형 태양전지의 효율과 전기화학적 특성에 대해서도 최근의 연구들이 정리되어 있다.

고분자전해질 연료전지용 유기/무기 복합 전해질 (Organic / inorganic composite membrane for Polymer Electrolyte Membrane Fuel Cell)

  • 최성호;홍현실;이흥찬;김유미;김건
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.169-171
    • /
    • 2003
  • Organic/inorganic hybrid membranes have been prepared and evaluated as polymer electrolytes in a polymer electrolyte membrane fuel cell (PEMFC). Previously, partially fluorinated poly (arylenether) was synthesized and the polymer was sulfonated by fuming sulfuric acid$(30\%\;SO_3)$. Modification of these polymers with coupling agent and inorganic materials was carried out to prepare membranes. Membranes cast from these materials were investigated in relation to the proton conductivity and weight loss at the room temperature. It was found that these membranes had a higher conductivity of $10^{-2}\;Scm^{-1}$ at the room temperature. But inorganic materials have leaked out from the hybrid membrane. If this problem is resolved, organic/inorganic hybrid membranes will become satisfactory Polymer electrolytes for the PEMFC.

  • PDF

리튬 이차전지 고분자 전해질용 다공성 Poly(vinylidene fluoride)/Poly(ethylene carbonate) 막의 특성 연구 (Characterization of Porous Poly(vinylidene fluoride)/Poly(ethylene carbonate) Membranes for Polymer Electrolytes of Lithium Secondary Batteries)

  • Jeon, Jae-Deok;Kwak, Seung-Yeop
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 춘계 총회 및 학술발표회
    • /
    • pp.69-72
    • /
    • 2004
  • So far the most practical polymer electrolytes are gel systems, which contain a polymeric matrix, a lithium salt, and aprotic organic solvents. This has met with success but has had disadvantages that the addition of solvents promotes deterioration of the electrolyte's mechanical properties and increases its reactivity towards the lithium metal anode.[1](omitted)

  • PDF

Polymer Electrolyte Membranes and their Applications to Membranes, Fuel Cells and Solar Cells

  • Kang, Yong-Soo
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.29-32
    • /
    • 2003
  • Polymer electrolyte membranes are developed for the applications to facilitated transport membranes, fuel cells and solar cells. The polymer electrolyte membranes containing silver salt show the remarkably high separation performance for olefin/paraffin mixture in the solid state; the propylene permeance is 45 GPU and the ideal selectivity of propylene/propane is 15,000. For fuel cell membranes, the effects of the presence and size of the proton transport channels on the proton conductivity and methanol permeability were investigated. The cell performance for dye-sensitized solar cells employing polymer electrolytes are measured under light illumination. The overall energy conversion efficiency reaches 5.44 % at 10 ㎽/$\textrm{cm}^2$, to our knowledge the highest value ever reported in the polymer electrolytes.

  • PDF

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • 멤브레인
    • /
    • 제13권1호
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

Study on the Cycling Performances of Lithium-Ion Polymer Cells Containing Polymerizable Additives

  • Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.319-322
    • /
    • 2009
  • Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of polymerizable additive (3,4-ethylenedioxythiophene, thiophene, biphenyl). The organic additives were electrochemically oxidized to form conductive polymer films on the electrode at high potential. With the gel polymer electrolytes containing different organic additive, lithium-ion polymer cells composed of carbon anode and LiCo$O_2$ cathode were assembled and their cycling performances were evaluated. Adding small amounts of thiophene or 3,4-ethylenedioxythiophene to the gel polymer electrolyte was found to reduce the charge transfer resistance in the cell and it thus exhibited less capacity fading and better high rate performance.

Changes in Facilitated Transport Behavior of Silver Polymer Electrolytes by UV Irradiation

  • Jongok Won;Yosang Yoon;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • 제10권2호
    • /
    • pp.80-84
    • /
    • 2002
  • Silver species other than the silver ion were formed by UV irradiation on polymer electrolyte membranes containing silver salts and their effect on complexation behavior between the silver and olefin was investigated through the separation performance of olefin/paraffin mixtures. The ideal propylene/propane separation factor reached 350 and the separation coefficient was ca.15 due to the high loading amount of silver ions into poly(2-ethyl-2-oxazoline) (POZ) without UV irradiation. On UV irradiation either in air or under nitrogen, the silver-POZ membranes became yellow-brown initially due to the formation of colloidal silver particles, and finally black and metal-like luster. Even when Ag$^{+}$ was converted, to some extent, to Ag$^{\circ}$ by UV irradiation in air at the early stage, the separation coefficient of olefin/paraffin mixtures was maintained. This suggests that silver species other than the silver ion is active for olefin carrier for facilitated transport. Meanwhile the steady decrease of the separation coefficient was observed in the silver/POZ membranes irradiated under $N_2$. It is suggested that the reduction of silver ions in POZ goes through a different photoreduction mechanism with UV irradiation depending on the environment.t.

고분자 연료전지용 세공충진막의 제조 및 연료전지 특성 (Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances)

  • 최영우;박진수;이미순;박석희;양태현;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2009
  • Proton exchange membrane is the key material for proton exchange membrane fuel cells (PEMFC). Currently widely-used perfluorosulfonic acid membranes have some disadvantages, such as low thermal stability, easy swelling, excessive crossover of methanol and high price etc. Other membranes, including sulfonated polymer, radiation grafted membranes, organic-inorganic hybrids and acid-base blends, do not satisfy the criteria for PEMFC, which set a barrier to the development and commercialization of PEMFC. Pore-filling type proton exchange membrane is a new proton exchange membrane, which is formed by filling porous substrate with electrolytes. Compared with traditional perfluorosulfonic acid membranes, pore-filling type proton exchange membranes have many advantages, such as non- swelling, low methanol permeation, high proton conductivity, low cost and a wide range of materials to choose. In this research, preparation methodology of pore-filling membranes by particularly using all hydrocarbon polymers and fuel cell performances with the membranes are evaluated.

  • PDF

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa;Won Jongok;Oh In Hwan;Ha Heung Yong;Cho Eun Ae;Kang Yong Soo
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.101-106
    • /
    • 2006
  • The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.