• Title/Summary/Keyword: polymer cement concrete

Search Result 327, Processing Time 0.021 seconds

Fundamental properties of polymer composite materials for concrete repair (콘크리트 보수용 폴리머 복합재료의 기초적 성질)

  • 지경용;연규석;이윤수;전철수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.319-322
    • /
    • 1999
  • The adhesion properties of polymer cement mortars for cement concrete repair were evaluated with respect to polymer-cement ratios and the surface conditions of cement concrete substrate. Styrene-butadiene rubber (SBR) was used as an additive for polymer cement mortars. The adhesion strength of cement mortar was smaller than that of polymer cement mortar. The adhesion strengths to the dry surfaces of substrate were larger than those to the wet surfaces, indicating that the dryness of substrate increased the adhesion strength in repairing concrete structures.

  • PDF

Effect of Mix Proportions on the Permeability and Mechanical Properties of Polymer Cement Concrete (폴리머 시멘트 콘크리트의 배합조건이 투수성능과 역학적 성질에 미치는 영향)

  • 박응모;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.356-361
    • /
    • 1998
  • Permeable polymer cement concrete in this study is one of the invironment conscious concretes that can be applied at roads, side walks, parking lots, interlocking block and river embankment, etc. In this study, permeable polymer cement concretes using polymer dispersion(St/Ac) with water-cement ratios of 25, 30, 35 and 40%, polymer-cement ratios of 0, 5, 10, 15 and 20%, and a ratio of cement to aggregate (by weight), 1 : 3.5(about 415kg/㎥), 1 : 4.0(about 375 kg/㎥), and 1 : 4.5(about 345kg/㎥) are prepared, and tested for compressive, flexural and tensile strength, and permeability. From the test results, increase in the strengths of permeable polymer cement concrete are clearly observed with increasing polymer-cement ratio, we can obtain the maximum strengths at water-cement ratio of 35%. The optimum permeable polymer cement concrete according to application and location of work can be selected in various mix proportions.

  • PDF

Deformation Characteristics of Reinforced Polymer Concrete Beams (철근보강 폴리마 콘크리트보의 변형특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.63-72
    • /
    • 1988
  • The primary objective of the study was to find the deformation characteristics of reinforced polymer concrete beams. A test program was carried out to compare the behavior in deformation of polyester and MMA concrete beams with cement concrete beams but with varying ratios of tensile reinforcement. From the results the following conclusions can be made. 1.The various strengths of polymer concrete ware very high compared to the strengths for cement concrete. Also, compared to conventional concrete beams, flexural strength of reinforced polymer concrete beams was distinctly higher for the same section and steel ratios. 2.The polymer concrete beams exhibit large deflections accompanied by relatively high strengths as compared to cement concrete beams. 3.The average ultimate strain at the extreme compression fiber of polymer concrete beams was 0.01 1 cm / cm, and this value was about three to four times as large as that of cement concrete beams, 4.The polymer concrete beams developed more cracks which were more wide crack distribution spacing than the cement concrete beams, and the beams failed in a more ductile manner. 5.The reinforcing steel ratio has a significant effect on the beam strength, load-deflection response, stress-strain curve, and crack pattern of polymer concrete beams.

  • PDF

Pullout Bond Characteristics of Polymer Cement Slurry Coated Rebars (폴리머 시멘트 슬러리 도장철근의 인발부착 특성)

  • 김현기;김민호;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.117-122
    • /
    • 2001
  • Recently, epoxy-coated re-bar used to the structure partly and put to practical use step, but not economical and appeared to the defect of deterioration of long term bond strength between concrete. The method for complement the defect of epoxy coated re-bar, study of polymer cement slurry coated re-bar started and basic properties appeared to excellent, but study of bond properties embedded in concrete specimens insufficient until now. This study attempts to examination of using possibility for bond strength of polymer cement slurry coated re-bar between concrete specimens compare to ACI Code and KS Code through pull-out test of 15cm$\times$15cm$\times$15cm specimens with polymer cement slurry coated re-bar as polymer cement ratio 50%, 100%, 150%, coating thickness 250${\mu}{\textrm}{m}$, 440${\mu}{\textrm}{m}$ and curing age. In the results of this study, the bond strength of polymer cement slurry coated re-bar compare to plain re-bar, epoxy coated re-bar decreased St/BA-modified polymer cement slurry coated re-bar, but bond strength of PA-modified polymer cement slurry coated re-bar appeared to excellent results. The bond properties of polymer cement slurry coated re-bar between concrete will be obtain more precise results according to compressive strength change of concrete and re-bar diameter size.

  • PDF

A Study for Chemical Resistance of Polymer Cement Concrete Using Tailing (폐석 미분말을 혼입한 폴리머 시멘트 콘크리트의 내약품성에 관한 연구)

  • 전철수;연규석;이윤수;이필호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.355-360
    • /
    • 1999
  • Polymer cement is made by the modifying ordinary cement concrete with polymer additive. Until now polymer cement concrete is not used for the structural member, but it is growing to be considered as developing uses such as a waterproof of roof slab, the structural member for protecting corrosion, and a road pavement. The plymer cement concrete, being used for those uses, is superior to the cement concrete against the inorganic, organic acid, salt of acetic acid and organic solvents generally. In this paper, the polymer cement concrete was made by the ratio of 1:1 of sands and tailing in fine aggregate in order to solve the environmental pollution which causes the social problem by the tailing, It was measured for the compressive strength, flexural strength, and chemicals resistance was tested by dealing with 10% HCI, 20% NaOH and 10% NaCl aqueous solution.

  • PDF

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.

A Study on the Resistance for Frost Damage of Polypropylene Fiber Reinforced Light Weight Polymer Cement Concrete (폴리프로필렌섬유보강 경량 폴리머 시멘트 콘크리트의 내동해성에 관한 연구)

  • 소형석;소승영;소양섭;박종호;탁재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.89-92
    • /
    • 1995
  • For the development of lilght weight cement concrete with high durability, this study used perlite and paper sludge ash by the light weight material, and polypropylene fiber by the reinforcment, and poly-acrylic ester emulsion by the matrix improvement. According to the increasing mixture ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement ratio of fiber and use of polymer, the light weight polypropylene fiber reinforced polymer cement concrete were showed high resistance for frost damage.

  • PDF

Fundamental Properties of Lightweight Polymer-Cement Mortars Using Polystyrene Beads (Polystyrene Beads를 사용한 경량 폴리머 시멘트 모르타르의 기초적 성질)

  • 이기원;신영수;이윤수;황진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.327-332
    • /
    • 2000
  • The objective of this study was to improve the defects of lightweight cement concrete by treating with redispersible polymer powders. The statistical relationships of water-cement ratios, contents of lightweight aggregates and polymer powers and be used for predicting the concrete strength. It was found that the varieties and techniques adopted in this experiment were capable of identifying the influence of various tested for air contents, flow test, water absorption, specific gravity, flexural and compressive strength. This study showed that fundamental properties were very affected by cement- lightweight aggregate ratio, polymer-cement ratio and water-cement ratio.

  • PDF

A Study on the Water Permeability and Drying Shrinkage of Polymer Cement Composites (폴리머 시멘트 복합체의 투수성 및 건조수축에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.71-77
    • /
    • 2009
  • In a range of forms, such as latex, water-soluble polymer, liquid resin, and monomer, polymer dispersions have been widely used in the construction industry as cement modifiers because of their excellent properties, such as acid-resistance, water-proofness, and good ductility in mortar and concrete. Polymer cement slurry (polymer-modified slurry) is made of cement and polymer dispersions, with a high polymer-cement ratio of 50% or more. The purpose of this study is to evaluate the water permeability and drying shrinkage of polymer cement mortar (polymer-modified mortar) and cement concrete coated by polymer cement slurry. The polymer cement mortar and cement concrete are prepared with various polymer types, polymer-cement ratios and curing methods, and are tested for water permeability, drying shrinkage and strength. The test results showed thatthe weight of permeable water of polymer cement mortar decreases with an increase in the polymer-cement ratio, reaching a minimum at the polymer-cement ratio of 20%. In particular, the weight of permeable water of St/BA-modified mortar with a polymer-cement ratio of 20% coated with St/BA-modified slurry is about 1/55 that of unmodified mortar. The EVA- and St/BA-modified slurries coated on cement concrete have about 4 or 5 times higher drying shrinkage compared to cement concrete. The strength of polymer cement mortars tends to increase with a higher polymer-cement ratio, and is considerably higher than that of unmodified mortar. It is thus concluded that polymer cement mortars coated by polymer cement slurry are effective for industrial application, and have superior properties such as waterproofness and strengths, compared with conventional cement mortar.

An Experimental Study on the Mechanical Properties of Permeable Polymer Concrete (투수용 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.95-105
    • /
    • 1996
  • This study was performed to evaluate the mechanical properties of permeable polymer concrete using fillers and unsaturated polyester resin. The following conclusions were drawn; 1. The unit weight was in the range of 1, 663~ l, 892kg/$cm^3$, the weights of those concrete were decreased 18~28% than that of the normal cement concrete. 2. The highest strength was achieved by fly ash filled permeable polymer concrete, it was increased 22% by compressive strength, 190% by tensile strength and 192% by bending strength than that of the normal cement concrete, respectively. 3. The external strength of permeable pipe was in the range of 3, 083~3, 793kg/m, the external strengths of those concrete were increased 2~26% than that of the normal cement concrete. Accordingly, these permeable polymer concrete pipe can be used to the members and structures which need external strength. 4. The static modulus of elasticity was in the range of $5.7{\times} 10^4 ~ 15.4{\times} 10{^4}kg/cm^2 $, which was approximately 35~64% of that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed relatively higher elastic modulus. The poisson's number of permeable polymer concrete was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $83{\times} 10^3 ~ 211{\times} 10{^3}kg/cm^2 $, which was approximately Ins compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 22~45% than that of the static modulus. 6. The ultrasonic pulse velocity was in the range of 2, 584 ~ 3, 587m/sec, . which was showed about the same compared to that of the normal cement concrete. Fly ash filled permeable polymer concrete was in the range of$0.58~8.88 {\ell}/cm^2/hr$, , and it was larglely dependent upon the mixing ratio. These concrete can be used to the structures which need water permeability.

  • PDF