• 제목/요약/키워드: polymer bonding

검색결과 404건 처리시간 0.03초

실세스키옥세인을 사용한 폴리스티렌 나노복합재료 (Organic-Inorganic Nanocomposites of Polystyrene with Polyhedral Oligomeric Silsesquioxane)

  • 김경민
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.380-384
    • /
    • 2006
  • 구조가 제어된 polyhedral oligomeric silsesquioxane (POSS)을 무기물로 폴리스티렌(PS)을 유기고분자로 사용하여 유기용매에 가역적으로 용해될 수 있는 새로운 유기-무기 나노복합재료를 합성하였다. 페닐기가 도입된 POSS와 PS와의 복합화에서는 다양한 중량비에서 투명하고, 균일한 복합재료를 얻을 수 있었다. 반면에 사이클로헥실기가 도입된 POSS와 PS와의 복합화에서는 불투명하구 불균일한 복합체를 얻었다. 따라서 페닐기가 도입된 POSS와 PS간의 물리적인 결합(physical bonding), 즉 aromatic(${\pi}-{\pi}$) 결합을 통하여 지금까지 유기물질과 무기물질을 복합화하기 위해 주로 사용되었던 화학결합(chemical bonding) 없이도 두 성분이 서로 균일하게 나노 크기로 혼성된 새로운 나노복합재료를 제조할 수 있었다. 또한 POSS를 이용해 얻어진 나노복합체는 기존의 솔-젤(sol-gel)방법으로 얻어진 복합체와는 달리, 용매에 다시 녹고 물리적인 결합을 이용했기 때문에 가역적으로 반복해서 복합재료를 만들 수 있는 장점을 가지고 있었다. 합성되어진 복합재료의 균일성과 분산성은 시차 주사열분석기(DSC)와 주사전자현미경(SEM) 및 X-선 회절분석기(XRD)에 의해 확인하였다.

Preparation, Properties and Application of Polyamide/Carbon Nanotube Nanocomposites

  • Chen, Peng;Kim, Hun-Sik;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • 제17권4호
    • /
    • pp.207-217
    • /
    • 2009
  • The discovery of carbon nanotubes(CNTs) has opened up exciting opportunities for the development of novel materials with desirable properties. The superior mechanical properties and excellent electrical conductivity make CNTs a good filler material for composite reinforcement. However, the dispersal of CNTs in a polymer solution or melt is difficult due to their tendency to agglomerate. Many attempts have been made to fully utilize CNTs for the reinforcement of polymeric media. Therefore, different types of polymer/CNTs nanocomposites have been synthesized and investigated. This paper reviews the current progress in the preparation, properties and application of polyamide/CNTs(nylon/CNTs) nanocomposites. The effectiveness of different processing methods has increased the dispersive properties of CNTs and the amelioration of their poor interfacial bonding. Moreover, the mechanical properties are significantly enhanced even with a small amount of CNTs. This paper also discusses how reinforcement with CNTs improves the electrical thermal and optical properties of nylon/CNTs nanocomposites.

Sulfamethazine에 의한 폴리아크릴산의 항균 효과 (Antibiotics Effect of Synthetic Polyacrylic Acid Containing Sulfamethazine)

  • 윤철훈
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.180-185
    • /
    • 2001
  • Antibiotics polymer prepared by chemical bonding and simple blending of antibacterial into polymers have attracted much interest because of their long-lasting and antibacterial activity. Antibiotics polymer can significantly reduce losses associated with dissolution, photolytic decomposition and volatillization. Further more, increased efficiency safety and selectivity are additional benefits which may be realized. In this study, Antibiotics polymer was synthesized by chemical reaction of polyacrylic acid with sulfamethazine by N,N'-dicyclohexylcarbodiimide(DCC) method. Antibacterial susceptibility was determined against Streptococcus pyrogenes[gram(+)] and Esherichia coli.[gram(-)] using a standardized disc test. As a result, the synthetic antibiotics polymer exhibited the broad susceptibilty against Streptococcus pyrogenes and Esherichia coli. Especially, the antibiotic effect of antibacterial polymer against Gram negative(Esherichia coli) was much stronger than that against Gram positive(Streptococcus pyrogenes).

Polymer Catalysts by Molecular Imprinting: A Labile Covalent Bonding Approach

  • 김종만;안광덕
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권7호
    • /
    • pp.689-692
    • /
    • 2001
  • An imprinting technique with labile covalent interactions has been developed in the design of new polymer catalysts. The template monomer 2 was prepared and copolymerized with DVB or EDMA to provide the polymer with a cavity having the shape of th e transition state of the reaction as well as binding sites for the substrate and catalytic functionalities. The rate of hydrolysis of diphenyl carbonate (1) in the presence of the imprinted polymer IP-DVB-THF was found to be 120 times faster than the background uncatalyzed reaction. A Km of 32 mM and a kcat of 1.8 ${\times}$ 10-3min-1 were observed from Michaelis-Menten kinetics with the imprinted polymer IP-DVB-THF.

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung;Nah, Jae-Woon;Cho, Kil-Won;Kim, Seong-Hun;Hahn, Ai-Ran
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권10호
    • /
    • pp.1485-1489
    • /
    • 2003
  • The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.

Self-Healing Asphalt Prepared by using Ionic Epoxy Resin

  • Lee, Young-Jik;Seo, Jun-Young;Kim, Seo-Yeon;Lee, Seung-Hyun;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.167-174
    • /
    • 2015
  • Anionic epoxy compound was synthesized and added to asphalt aiming to prepare self-healing asphalt. Epoxy-modified asphalt showed excellent modification effect and healing effect as well. The results revealed that with 5% addition of polymer the tensile strength, impact strength and complex shear modulus of the polymer-modified asphalt increased by 65%. 64% and 35%, respectively. It seems that high interaction occurs between polymer and asphalt matrix. Self-healing efficiency of the polymer-modified asphalt based on tensile strength showed 100%, comparing to 79% of straight asphalt. In impact experiment the polymer-modified asphalt showed 99% of healing efficiency, comparing to 77% of straight asphalt. In rheological experiment the polymer-modified asphalt showed 103% of healing efficiency, comparing to 72% of straight asphalt. It appears that the ionic bonding existing in epoxy polymers contributed to high values of self-healing efficiency. The polymer which has high intermolecular force fills the crack of the asphalt, pulling the opponent side each other, and so the original properties were restored.

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

수종의 상아질 결합체의 전단강도 및 결합부의 형태에 관한 비교연구 (THE COMPARATIVE STUDY ON THE SHEARBOND STRENGTH AND THE MORPHOLOGY OF RESIN-DENTIN INTERFACE BONDED BY SEVERAL DENTINAL BONDING SYSTEM)

  • 김윤철;김용기
    • 대한소아치과학회지
    • /
    • 제23권4호
    • /
    • pp.867-886
    • /
    • 1996
  • The purpose of this study was to evaluate the shearbond strength and resin-dentin interface of three different dentinal bonding systems in primary and permanent teeth. Thirty extracted human primary molars and premolars, which were non-carious and free of obvious defect, were selected for this study. All specimens were divided into six groups with two groups allocated for each of the three dentinal bonding system(All-bond 2, Scotchbond Multi-Purpose, Gluma bonding system). After completion of bonding composite to dentin using each tested dentin bonding system, bond strength measurement and histological observation were performed. The results are as follows: 1. All-bond 2 and Scotchbond Multi-Purpose, A good quality hybrid layer was identified, the morphology of which could be equated with the zone of H-E and Brown-Brenn staining. In Gluma bonding system, hybrid layer was very thin, and separated from the solid polymer. 2. All-bond 2 had the highest mean shearbond strength, followed by Scotchbond Multi-Purpose and Gluma bonding system in both primary and permanent teeth. There was no statistically significant difference between All-bond 2 and Scotchbond Multi-Purpose. Statistically significant difference could be found between Gluma bonding system and the other two groups(p<0.05). 3. The fracture patterns observed were mainly the mixture of adhesive failure and dentin dettachment pattern in All-bond 2 and Scotchbond Multi-Purpose while adhesive failure prevailed in Gluma bonding system.

  • PDF

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • 제32권3호
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

택코트용 폴리머 개질 유화아스팔트 개발 및 성능 평가 (Development and Evaluation of Polymer-Modified Asphalt Emulsions Used for Tack Coats)

  • 김영민;임정혁;황성도
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The objectives of this study were to develop a new polymer-modified emulsion for application to tack coats and to evaluate its properties by comparing it with other types of asphalt emulsions, with the goal of providing an enhanced tack coat material for use in construction. METHODS: Modified asphalt binders were developed from using SBS and SBR latex in the laboratory, and their fundamental properties, such as their penetration index and PG grade, were evaluated. Based on the properties, a new tack coat material was developed. To evaluate the newly developed asphalt emulsion, the bonding strength between the two layers of HMA was measured by applying a uniaxial tensile test and shear test. For the tests, a total of four different conditions were applied to the specimens, including the developed asphalt emulsion, latex modified asphalt emulsion, conventional asphalt emulsion, and non-tack coating. RESULTS AND CONCLUSIONS: Overall, the developed asphalt emulsion exhibits the best bonding strength behavior among all of the three types. Also, the two types of polymer-modified emulsions were found to be better for application for use as a tack coat than a conventional emulsion. Especially, at a high temperature ($50^{\circ}C$), the conventional asphalt emulsion no longer acts as a tack coating material. Therefore, the polymer-modified emulsion should be considered for application to tack coat construction during the summer.