• Title/Summary/Keyword: polymer additives

Search Result 270, Processing Time 0.028 seconds

Drag Reduction by Polymer and Surfactant in Tubulent Channel and Pipe Flows (난류 유동일때 관과 channel에서 고분자와 계면활성제에 의한 마찰저항 감소에 관한 연구)

  • Park, S.-R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.359-365
    • /
    • 1995
  • The drag reduction phenomenon with an additives of surfactant(STAC, stearlytrimethyl ammonium chloride) and polymer(PEO, polyethlene oxide) was investigated in fully developed turbulent pipe and channel flows at various low Reynolds numbers as well as very low additives concentration. A maximum of 70% drag reduction compared with plain water flow was found. This maximum drag reduction percentage obtained with surfactant solution was slightly higher than that of the Virk's asymptote in polymer solution.

  • PDF

The Release of Albumin from PLGA and PCL Wafers Containing Natural and Synthetic Additives for Protein Delivery (단백질 전달체로서 천연 및 합성재료의 첨가에 따른 PLGA와 PCL웨이퍼로부터 알부민의 방출거동)

  • Hyun Hoon;Lee Jae Ho;Seo Kwang Su;Kim Moon Suk;Rhee Jhon M.;Lee Hai Bang;Khang Gilson
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.468-474
    • /
    • 2005
  • PLGA and PCL copolymers initiated by carbitol as drug carriers were synthesized by ring-opening polymerization of L-lactide (LA), glycolide (GA), and $\varepsilon-caprolactone(\varepsilon-CL)$. Implantable wafers were simply fabricated by direct compression method after physical mixing of copolymers and bovine serum albumin-fluorescein isothiocyanate (BSA-FITC) as a model protein drug. The release amounts of BSA-FITC from wafers were determined by fluorescence intensity using the fluorescence spectrophotometer. Also, the release behavior of BSA-FITC on wafers was controlled by adding the additives such as collagen, small intestinal submucosa (SIS), poly(vinyl pyrrolidone) (PVP), and poly(thylene glycol) (PEG). The wafer prepared by PLGA and PCL exhibited slow release within $10\%$ for 30 days. But, those prepared by a variety of additives exhibited the controlled BSA release patterns with a dependence on the additive contents. furthermore, the wafers containing natural materials such as collagen and SIS showed more zero-order release profile than that with synthetic materials such as PVP and PEG. It was confirmed that the release of BSA from implantable wafers could be easily controlled by adding natural additives.

Analysis of Minor Additives and Polymer in Used-stripper Using Pyrolysis-Gas Chromatography/Mass Spectrometry and Electrospray Mass Spectrometry

  • Koo, Jeong-Boon;Park, Chang-Hyun;Han, Cheol;Na, Yun-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.368-372
    • /
    • 2009
  • The trace polymer and additives in used stripper solutions were analyzed by a combination of Py-GC/MS and ESI-MS. In the comparison of the pyrolysates produced by the pyrolysis of the pure stripper and photoresist at $500{^{\circ}C}$, the presence of novolac polymer in the used stripper was confirmed by the presence of the characteristic peaks of its pyrolysates, such as those of the methylphenol, di-methylphenol and methylenebis(methylphenol) isomers. The intact trace polymer was measured by ESI-MS, which showed the distribution of oligomers at intervals of 120 Da, indicating di-methylphenol to be the repeat unit. Additional MS/MS measurements demonstrated that the end group is methylphenol and the repeat groups are di-methylphenol. Some modified oligomers caused by the methylation or di-methylation of the repeat unit were also identified. Although the polymer is only present at a trace level in the used stripper, these combined analytical methods provided the means to qualify the stripper solution through the identification and structural determination of the polymer.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.

Improvement of Strength and Chemical Resistance of Silicate Polymer Concrete

  • Figovsky, Oleg;Beilin, Dmitry
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18${\sim}$20%), low strength and insufficient water resistance. Therefore they can not be used as materials for load-bearing structural elements. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block of superficial pores and reduces concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. This effect is attributable to hardening of contacts between silicate binder gel globes and modification of alkaline component owing to "inoculation" of the furan radical. The optimal concrete composition with the increased strength, chemical resistance in the aggressive environments, density and crack resistance was obtained.

Morphology Control of Active Layers for Efficient Organic Indoor Photovoltaics (광활성층 모폴로지 제어를 통한 실내광 유기태양전지의 효율 향상 연구)

  • Yongchan Jang;Soyoung Kim;Jeonga Kim;Jongbok Kim;Wonho Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.130-136
    • /
    • 2022
  • Recently, organic semiconductor based indoor photovoltaics have gained attention since they exhibit excellent photovoltaic performance than that of conventional Si-based photovoltaics. In this study, we synthesize the medium bandgap polymer of PTBT and optimize PTBT:PC71BM blend films by introducing solvent additives. To this end, we select DIO and CN solvent additives and vary their contents from 0 to 3 vol%. As a result, we produce the highest power conversion efficiency of 11.31% under LED 1000 lx conditions with DIO (1.5 vol%) + CN (0.5 vol%)

Combinatorial Methods for Characterization and Optimization of Polymer Formulations

  • Amis Eric J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.110-111
    • /
    • 2006
  • Most applications of polymers involve blends and mixtures of components including solvents, surfactants, copolymers, fillers, organic or inorganic functional additives, and various processing aids. These components provide unique properties of polymeric materials even beyond those tailored into the basic chemical structures. In addition, skillful processing extends the properties for even greater applications. The perennial challenge of polymer science is to understand and exploit the structure-processing-property interplay relationship. We are developing and demonstrating combinatorial methods and high throughput analysis as tools to provide this fundamental understanding.

  • PDF

Improvement of Dissolution Rate for Zaltoprofen Tablets Using CMC and HPMC (CMC와 HPMC를 이용한 잘토프로펜 정제의 용출률 개선)

  • Park, Hyun-Jin;Hong, Hee-Kyung;Song, Yi-Seul;Hong, Min-Sung;Seo, Han-Sol;Hong, Dong-Hyun;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.300-305
    • /
    • 2010
  • Zaltoprofen is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs) and has been widely used in the treatment of a number of arthritic conditions or lumbago. Zaltoprofen has low water solubility and low bioavailability, therefore great efforts have been devoted to enhance the extent of drug adsorption. In this study, zaltoprofen was formulated into a tablet to enhance the bioavailability and to achieve sustained-release using additives such as lactose monohydrate, carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPMC). Fourier transform-infrared (FTIR) and differential scanning calorimeter (DSC) were employed to study the structure and crystallization of zaltoprofen in the tablet with various contents of additives. It was found that additives had interactions with zaltoprofen and inhibited the crystallization of zaltoprofen. Tablets containing low viscosity HPMC showed a higher release than those containing high viscosity HPMC. Also, as the amount of CMC increased zaltoprofen release increased.

Preparation and Characteristics of Polymer Additives for Functional Instant Adhesives (기능성 순간접착제용 중합체 첨가제의 제조 및 특성)

  • Ihm, H.J.;Ahn, K.D.;Kim, S.B.;Kim, E.Y.;Han, D.K.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • Ethyl cyanoacrylate (ECA) is used as an instant adhesive, and it can be readily polymerized by moisture in air without any initiator and applied for industrial products and ohome use. However, pure ECA monomer is low-viscosity liquid at room temperature that flows into substrate surface. To thicken the instant adhesive, poly(methyl methacylate)(PMMA) is often added in it commercially. Another disadvantage of instant adhesive polymer is its brittleness In this study, functional polymers including PMMA for an additive of ECA were prepared to increase viscosity of the monomer and flexibility of the adhesive atthe same time The additives, P(MMA-VAc-EVE), were synthesized by radical copolymerization of MMA with VAc and EVE having low glass transition temperature (Tg). The additives were added to ECA to get functional instant adhesives. The chemical structures of the additives and ECA polymers were confirmed by $^1H$ NMR and FTIR, and their physical and mechanical properites were also evaluated. The Tg of the obtained additives decreased with increasing the content of VAc or VAc-EVE, indicating more improved flexibility. In addition, functional instant adhesive containing the additives showed higher bonding strength than that of the existing one.

  • PDF