• Title/Summary/Keyword: polyfluorene derivative

Search Result 4, Processing Time 0.027 seconds

High resolution patterning of polyfluorene derivative containing photo cross-linkable oxetane units

  • Park, Moo-Jin;Lee, Jeong-Ik;Chu, Hye-Yong;Kim, Seong-Hyun;Zyung, Taeh-Young;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1419-1420
    • /
    • 2005
  • We have synthesized a photo patternable blue lightemitting polyfluorene (PF) derivative containing cross-linkable oxetane units. Poly(9,9-bis-(4-octyloxyphenyl)- fluorene-2,7-diyl-alt-9,9-bis-((3-hexyloxy-3'- ethyl)-oxetane)-fluorene-2,7-diyl) has been synthesized by Suzuki coupling polymerization. The relationship between patterning property and several variables such as the intensity of the exposed UV light, the concentrations of additives, has been studied by using optical microscope UV/visible spectroscopy, photoluminescence and scanning electron microscope (SEM). We obtained fine patterns with 10 mm resolution using the polymer film after exposure and development. This patterning method using conjugated polymers can be applicable to make fine pixels for PLEDs and OFETs.

  • PDF

Synthesis and Characterization of Iridium-Containing Green Phosphorescent Polymers for PLEDs

  • Xu, Fei;Kim, Hee Un;Mi, Dongbo;Lim, Jong Min;Hwang, Ju Hyun;Cho, Nam Sung;Lee, Jeong-Ik;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.399-405
    • /
    • 2013
  • Two series of new green phosphorescent polymers bearing a bis(2-phenyl-pyridine)iridium(III)(dibenzoylmethane) [$(ppy)_2Irdbm$] complex were designed and synthesized. Poly-carbazole (PCbz) derivative or polyfluorene with pendant carbazole groups (PFCbz) were employed as host polymers for the iridium complex. The iridium complex monomer was copolymerized with the host monomers using varying monomer ratios via a Yamamoto coupling reaction. Efficient energy transfer from host to dopant unit was observed by increasing the ratio of the iridium guest in the copolymers. Electroluminescent devices with the configuration ITO/PEDOT:PSS/polymer/BmPyPB/LiF/Al were fabricated and characterized. The phosphorescent polymers composed of the iridium complex guest and polyfluorene with carbazole pendants as a host performed better than the polymers composed of the same guest and the main chain polycarbazole host. A maximum external quantum efficiency of 0.73%, a luminous efficiency of 1.21 cd/A, and a maximum luminance of 372 $cd/m^2$ were obtained from a device fabricated using one of the synthesized copolymers.

Highly Enhanced EL Properties of PF Copolymers with Pyrazole Derivatives (피라졸 유도체를 함유한 폴리알킬플루오렌 공중합체의 향상된 EL 특성)

  • Kang, In-Nam;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.539-544
    • /
    • 2010
  • We have synthesized new blue electroluminescent polyalkylfluorene-based copolymers [poly(F-co-Py)x:y, where x:y = 99:1 or 95:5 mole ratios] containing the hole-injecting pyrazole derivative [3,3'-(4,6-bis(octyloxy)-1,3-phenylene)bis(1,5-diphenyl-4,5-dihydro-1H-pyrazole] through Ni(0) mediated polymerization, and their electroluminescent properties were investigated. Electroluminescent (EL) devices were fabricated with ITO / PEDOT:PSS (110 nm) / copolymers or PF homopolymer (80 nm) / Ca (50 nm) / Al (200 nm) configuration. Each EL device constructed from the copolymer exhibited significantly enhanced brightness and efficiency compared with a device constructed from the PF homopolymer. The EL device constructed with poly(F-co-Py)99:1 exhibited the highest luminous efficiency and brightness (0.95 cd/A and $2,907\;cd/m^2$, respectively). The achieved luminous efficiency was an excellent result, providing almost a 4-fold improvement on the efficiency obtainable with the a PF homopolymer device. This enhanced efficiency of the copolymer devices results from their improved hole injection and more efficient charge carrier balance, which arises from the HOMO level (~5.83 eV) of the poly(F-co-Py)99:1 copolymer, which is higher than that of the PF homopolyme (~5.90 eV).

Synthesis and Effect on t-Butyl PBD of the Blue Light Emitting Poly(phenyl-9,9-dioctyl-9',9'-dihexanenitrile) fluorene

  • Kim Byong-Su;Kim Chung-Gi;Oh Jea-Jin;Kim Min-Sook;Kim Gi-Won;Park Dong-Kyu;Woo Hyung-Suk
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.343-347
    • /
    • 2006
  • A novel, blue light-emitting polymer, poly(phenyl-9,9-dioctyl-9',9'dihexanenitrile)fluorene (PPFC6N), containing an alkyl and cyano group in the side chain, was synthesized by Suzuki polymerization and characterized. The polymer structure was confirmed by $^1H-NMR$. The number average molecular weight and the weight average molecular weight of the obtained polymer were 9,725 and 9,943 respectively. The resulting polymer was thermally stable with a glass transition temperature ($T_g$) of $93^{\circ}C$, and was easily soluble in common organic solvents such as THF, toluene, chlorobenzene and chloroform. The HOMO and LUMO energy levels of the polymer were revealed as 5.8 and 2.88 eV by cyclic voltammetry study, respectively. The ITO/PEDOT:PSS (40 nm)/PPFC6N (80 m)/LiF (1 nm)/Al (150 nm) device fabricated from the polymer emitted a PL spectrum at 450 nm and showed a real blue emission for pure PPFC6N in the EL spectrum. When t-butyl PBD was introduced as a hole blocking layer, the device performance was largely improved and the EL spectrum was slightly shifted toward deep blue. The device with PPFC6N containing t-butyl PBD layer showed the maximum luminance of 3,200 $cd/m^2$ at 9.5 V with a turnon voltage of 7 V.