• Title/Summary/Keyword: polyethylene terephthalate(PET)

검색결과 335건 처리시간 0.027초

이온빔 플라즈마 처리된 플라스틱 기판에 의한 OLED의 광추출 효율 향상 (Improvement of Out-coupling Efficiency of Organic Light Emitting Device by Ion-beam Plasma-treated Plastic Substrate)

  • 김현우;송태민;이형준;전용민;권정현
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.7-10
    • /
    • 2022
  • A functional polyethylene terephthalate substrate to increase light extraction efficiency of organic light-emitting diodes is studied. We formed nano-structured PET surfaces by controlling the power, gas, and exposure time of the linear ion-beam. The haze of the polyethylene terephthalate can be controlled from 0.2% to 76.0% by changing the peak-to-valley roughness of nano structure by adjusting the exposure cycle. The treated polyethylene terephthalate shows average haze of 76.0%, average total transmittance of 86.6%. The functional PET increases the current efficiency of organic light-emitting diodes by 47% compared to that of organic light-emitting diode on bare polyethylene terephthalate. In addition to polyethylene terephthalate with light extraction performance, by conducting additional research on the development of functional PET with anti-reflection and barrier performance, it will be possible to develop flexible substrates suitable for organic light-emitting diodes lighting and transparent flexible displays.

Experimental analysis of damage in short-fiber-reinforced composite waste polyethylene terephthalate as a pile foundation material

  • Jang, Hongseok;Seo, Segwan;Cho, Daesung
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.147-157
    • /
    • 2022
  • This study assessed the compressive and tensile strengths and modulus of elasticity of waste polyethylene terephthalate (PET) using the ASTM standard tests. In addition, short carbon and glass fibers were mixed with waste PET to examine the improvements in ductility and strength during compression. The bonding was examined via field-emission scanning electron microscopy. The strength degradation of the waste PET tested under UV was 40-50%. However, it had a compressive strength of 32.37 MPa (equivalent to that of concrete), tensile strength of 31.83 MPa (approximately ten times that of concrete), and a unit weight of 12-13 kN/m3 (approximately half that of concrete). A finite element analysis showed that, compared with concrete, a waste PET pile foundation can support approximately 1.3 times greater loads. Mixing reinforcing fibers with waste PET further mitigated this, thereby extending ductility. Waste PET holds excellent potential for use in foundation piles, especially while mitigating brittleness using short reinforcing fibers and avoiding UV degradation.

Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구 (Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts)

  • 심재욱;김승수
    • 공업화학
    • /
    • 제28권4호
    • /
    • pp.485-489
    • /
    • 2017
  • Polyethylene terephthalate (PET)는 화학적 안정성과 높은 기계적 강도를 가지고 있어 식품, 의류 등 다양한 분야에서 사용되고 있으며, 이로 인해 PET는 주요 폐플라스틱 폐기물 중 하나이다. 본 연구에서 PET를 재활용하기 위해 ethylene glycol (EG)와 glycolysis의 반응을 이용하여 단량체 회수에 관한 연구를 수행하였다. 마이크로 튜빙 반응기를 사용하여 EG/PET비율 1~4, 반응시간 15~90 min, 반응온도 $250{\sim}325^{\circ}C$에서 망간, 구리 촉매 조건하에서 연구를 진행하였다. 10 wt% $Cu/{\gamma}-Al_2O_3$ 촉매에서 반응온도, 시간과 EG/PET의 비가 각각 $300^{\circ}C$, 30 min와 1 : 2였을 때 가장 높은 89.46%의 bis (2-hydroxyethyl) terephthalate monomer (BHET) 수율을 나타내었다.

Reduction of reflection from PET (polyethylene terephthalate) film surface by natural plasma etching

  • Oh, Hoon;Song, Yu-Jin;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1419-1424
    • /
    • 2006
  • We could reduce the reflection from PET(polyethylene terephthalate) film surface by natural plasma etching which does not use etch masks. The plasma etched PET film showed lower reflectance and higher transmittance which is resulted by making subwavelength structure(SWS) on the film surface by the plasma etch rate difference between the amorphous and crystalline region in the surface of PET film.

  • PDF

전기 방사를 이용한 PET(Polyethylene terephthalate) 부직포 제조 (Preparation of PET non-woven by Electro-spinning)

  • 김관우;이근형;김학용;이덕래
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.177-178
    • /
    • 2002
  • 일반적으로 폴리에틸렌테레프탈레이트(polyethylene terephthalate)는 에틸렌글리콜(ethylene glycol)과 테레프탈산(terephthalic acid) 또는 디메틸렌 테레프탈레이트(dimethylene terephthalate)를 중합시켜 만든다[1]. 폴리에스테르는 전도성 필름, 전기전자분야, 청량음료의 병 등으로 널리 사용되고 있다. 또한 뛰어난 강도, 내열성을 이용하여 자동차분야, 전기분야에서 금속, 페놀수지를 대체하는 용도로 사용되고 있다. (중략)

  • PDF

Kinetic Analysis for the Catalytic Pyrolysis of Polyethylene Terephthalate Over Cost Effective Natural Catalysts

  • Pyo, Sumin;Hakimian, Hanie;Kim, Young-Min;Yoo, Kyung-Seun;Park, Young-Kwon
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.706-710
    • /
    • 2021
  • In the current research, thermal and catalytic thermogravimetric (TG) analysis of polyethylene terephthalate (PET) over natural zeolite (NZ), olivine, bentonite, HZSM-5, and HAl-MCM-41 were investigated using a TG analyzer and model-free kinetic analysis. Catalytic TG analysis of PET was carried out at multi-heating rates, 10, 20, 30, and 40 ℃/min, under nitrogen atmosphere. Apparent activation energy (Ea) values for the thermal and catalytic pyrolysis of PET were calculated using Flynn-Wall-Ozawa method. Although natural catalysts, NZ, olivine, and bentonite, could not lead the higher PET decomposition efficiency than synthetic zeolites, HZSM-5 and HAl-MCM-41, maximum decomposition temperatures on the differential TG (DTG) curves for the catalytic pyrolysis of PET, 436 ℃ over olivine, 435 ℃ over bentonite, and 434 ℃ over NZ, at 10 ℃/min, were definitely lower than non-catalytic pyrolysis. Calculated Ea values for the catalytic pyrolysis of PET over natural catalysts, 177 kJ/mol over olivine, 168 kJ/mol over bentonite, and 171 kJ/mol over NZ, were also not lower than those over synthetic zeolites, however, those were also much lower than the thermal decomposition, suggesting their feasibility as the proper and cost-effective catalysts on the pyrolysis of PET.

Catalytic Pyrolysis of Waste Polyethylene Terephthalate over Waste Concrete

  • Lim, Sejeong;Kim, Young-Min
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.707-711
    • /
    • 2019
  • The feasibility of waste concrete as a catalyst for the effective pyrolysis of polyethylene terephthalate (PET) was examined using thermogravimetric (TG) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS) analyses. TG analysis results indicated that the maximum decomposition temperature of PET is not altered by the use of waste concrete, showing similar values (407 ℃ and 408 ℃ at 5 ℃/min). Meanwhile, the volatile product distribution data obtained from the Py-GC/MS analysis revealed that the use of waste concrete promoted the deoxygenation reaction via converting the oxygen containing products such as benzoic acids, benzoates, and terephthalates to valuable deoxygenated aromatic hydrocarbons including benzene, toluene, ethylbenzene, and styrene. This suggests that the waste concrete can be used as a potential catalyst for the production of valuable aromatic hydrocarbons from PET pyrolysis.

Surface Cleaning of Polyethylene Terephthalate Film with Non-equilibrium Atmospheric Discharge Plasma

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권2호
    • /
    • pp.79-83
    • /
    • 2008
  • The dampness by treating the surface with polyethylene terephthalate (PET) film was measured to grasp the plasma parameters and was observed the surface condition with an atomic force microscope (AFM) to find the causes of the dampness. Also, the vibrational and rotational temperatures in the plasma were calculated after identifying the radicals within the plasma by analyzing the emission spectral with an emission spectrum. The hydrophilic properties were enhanced, by treating the surface of the PET film with non-equilibrium atmospheric discharge plasma. When the rotational temperature was 0.22 to 0.31 eV within the plasma, surface modification control could be easily carried out to surface treatment of PET film on non-equilibrium atmospheric pressure plasma.