• Title/Summary/Keyword: polyethylene gas pipe

Search Result 22, Processing Time 0.017 seconds

AE Characteristic of Polyethylene Pipe under various defects (다양한 결함에 대한 폴리에틸렌 배관의 음향방출 특성)

  • Nam Ki Woo;Lee Si Yoon;Ahn Seok Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.1-7
    • /
    • 2004
  • The polyethylene pipe can use semi-permanent because of the high corrosion resistance with chemical stability. In addition to, there is the merit that is an easy to establish and to maintain. However, as the reason that it is simply degraded when the polyethylene pipe was exposed to the outside, mainly it is used to lay under the ground with low-pressure gas transportation pipe. In this study, the nondestructive evaluation method was used to maintain the integrity of the polyethylene pipe. We simulated the various defects on the polyethylene pipes, and then the AE signal occurred according to the impact test of steel ball was evaluated by the acoustic emission method. From the results, the waveform and dominant frequency could be distinguishing from the defect shapes of polyethylene pipe. Especially, in the case of notch defect, the AE signals occur different by the angle and depth of the notch.

  • PDF

Electrofusion Joining Technology for Polyethylene Pipes Using Carbon Fiber (탄소섬유를 이용한 Polyethylene배관의 전기융착 기술)

  • Ahn, Seok-Hwan;Ha, Yoo-Sung;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.93-98
    • /
    • 2013
  • Fuel gas is an important energy source that is being increasingly used because of the convenience and clean energy provided. Natural gas is supplied to consumers safely through an underground gas-pipe network made of a polyethylene material. In electrofusion, which is one of the joining methods used, copper wire is used as the heating wire. However, it takes a long time for fusion to occur because the electrical resistance of copper is low. In this study, therefore, electrofusion was conducted by replacing the copper heating wire with carbon fiber to reduce the fusion time and improve the production when joining large pipes. Fusion and tensile tests were performed after the electrofusion joint was made in the polyethylene pipe using carbon fiber. The results showed that the fusion time was shorter and the temperature inside the pipe was higher with an increase in the current value. The ultimate tensile strength of specimens was higher than that of virgin polyethylene pipe, except for polyethylene pipes joined using a current of 0.8 A. The best fusion current value was 0.9 or 1.0 A because of the short fusion time and lack of transformation inside the pipe. Thus, it was shown that carbon fiber can be used to replace the copper heating wire.

Effect of Temperature and Pressure on the Weldability of Polyethylene Pipe for the Supply of Gaseous Fuels (온도와 압력이 가스용 폴리에틸렌관의 용접성에 미치는 영향에 관한 연구)

  • 김영규
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.97-103
    • /
    • 1996
  • The welding characteristics of polyethylene pipe for gas varying temperature and pressure is analyzed in this study. The analysis is very important to studying the weldability of PE pipe as well as is useful for its welding data. The specimens have the same welding conditions. Experimental data of the bead width, height and thickness for PE welding are measured with tool projector, Experimental results for PE welding Indicated that temperature more than pressure have influence on the weldability. It was confirmed that optimal PE welding within the limits of $210^{\circ}C$ and 15kg/$cm^2$ have high welding performance in comparison with other conditions. These results are very important to improve the safety and to reliable welding components of PE gas pipe.

  • PDF

Buried Polyethylene Gas Pipes Analysis using Finite Element Method under External Loadings (외부 하중에 대한 매설 폴리에틸렌 가스배관의 유한요소 해석)

  • Kil, Seong-Hee;Jo, Do-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.49-55
    • /
    • 2007
  • Polyethylene pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studies the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes are calculated according to the loading condition such as pipe types (pipe diameter $50{\sim}400mm$), burial depths ($0.6{\sim}1.2m$) and internal pressures ($0.4{\sim}4bar$). As a result, it is founded the effect and relation with each of loading conditions under the buried condition.

  • PDF

Guided Wave Mode Selection and Flaw Detection for Long Range Inspection of Polyethylene Coated Steel Gas Pipes (폴리에틸렌 코팅 가스배관의 광범위탐상을 위한 유도초음파 모드 선정 및 결함 검출)

  • Song, Sung-Jin;Park, Joon-Soo;Shin, Hyeon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2001
  • Ultrasonic guided waves were explored to apply them to the long range inspection of polyethylene coated steel gas pipes. The steel pipes have such dimensions as 190.7mm inside diameter and 5.3mm thickness. The outside surface of the pipe is coated by a polyethylene layer of $1.9{\pm}0.5mm$ thickness. Non-axisymmetric guided waves were excited on the outside surface of the polyethylene coated pipe by using a 0.5MHz transducer with a variable angle shoe. Frequency and phase velocity tuning was used to find optimum guided wave modes for the inspection. The dispersive characteristics of the modes were analyzed in time-frequency representation obtained by short time Fourier transforms. Sample results were presented for artificial defects such as wall thinning and hole.

  • PDF

AE characteristic of PE pipe under tensile test (PE 배관의 인장시험 동안 발생한 AE 특성)

  • Jeong, Jeong-Hwan;Nam, Ki-Woo;Ahn, Seok-Hwan;Park, In-Duck
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • Polyethylene pressure pipe has been used with a gas pipe material because of workability and stability etc.. Researches on characteristics of polyethylene pressure pipe are carried out, but there are rare. In this study, the tensile test was performed on polyethylene pipe. From the tensile test, AE signals were detected and estimated in real time. Also, the time-frequency analysis of AE signals was analyzed. From test results, PE pipes were displayed typical stress-strain curves oj semi-crystalline polymer. As result analyzed AE signals, could divide stress-strain curves could be divided into four stages. In the elastic region, signals were not detected. Low amplitude distributions of 30-35dB appeared after yielding, and high amplitude distributions of 30-60dB appeared with increased extension. From the time-frequency analysis of AE signals, the frequency band of 100kHz appeared mainly. Also, the frequency band of 300kHz appeared before the necking phenomenon spreads into the whole region, and the frequency band of 500kHz appeared on extension earlier.

  • PDF

Field Inspection of Phase-Array Ultrasonic for PolyEthylene Electrofusion Joints

  • Kil, Seong-Hee;Jo, Young-Do;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.22-25
    • /
    • 2012
  • Welding and/or fusion in polyethylene(PE) system made on site is focused on the control of the welding or fusion process to follow proper procedure. The process control is important, but it is not sufficient for the long term reliability of a pipe system. To achieve the rate of failure close to zero, Non Destructive Testing(NDT) is necessary in addition to joining process control. For electrofusion joints several non-destructive testing methods are available. The ultrasonic phased array technique is possible to detect various defects including wire deviations and regions with lack of fusion. In this studies, testing was carried to detect the defect after electrofusion joining of polyethylene piping is utilized by the ultrasonic phased array technique. From testing data, ultrasonic phased array technique is recommended as a reliable non-destructive testing method.

Finite Element Analysis on Polyethylene Gas Pipes under External Loadings (폴리에틸렌 가스배관의 외부 하중에 대한 유한요소 해석)

  • Kil, Seoog-Hee;Park, Kyo-Shik;Kim, Ji-Yoon
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.204-211
    • /
    • 2008
  • Polyethylene(PE) pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studied the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes were calculated according to the loading condition such as pipe types(pipe diameter $50{\sim}400mm$), burial depths($0.6{\sim}1.2m$) and internal pressures($0.4{\sim}4bar$). As a result, it was founded the effect and relation with each of loading conditions under the buried condition.

A Study on the Damage Evaluation of Polyethylene Pipe by Squeeze-off (스퀴즈오프에 따른 PE배관의 손상평가 연구)

  • Ho seong Seo;Hwa young Lee;Jae-hun Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • PE piping, which has advantages in terms of construction convenience and economy, is widely used for underground burial in the domestic urban gas field. These PE pipes use squeeze-off in many sites to block gas flow during maintenance and repair work. Squeeze-off refers to a method of compressing a PE pipe to block fluid flow, and damage may occur due to the nature of construction in which the pipe is deformed by physical force. In order to prevent damage to PE pipes due to squeeze-off, the main points to be reflected in the squeeze-off operation procedures such as proper compression range, use pressure, and diameter were derived through damage assessment and confidential test according to the compression rate. The compression experiment for PE pipe damage assessment was conducted while changing the compression rate (20%~40%), the pressure of use (2.8 kPa, 25 kPa, 70 kPa), and the pipe diameters (63 mm, 90 mm, 110 mm). As a result of damage assessment according to the compression rate, damage occurred in pipes with compression rates of 45%(110mm) and 73%(63mm), which are for analyzing the effect of excessive compression. In addition, the leakage test was conducted using Ar(argon) during the squeeze-off, and as a result of the experiment, leakage occurred under the conditions of 70kPa and 110mm of pipe. As a result of this study, it was confirmed that squeeze-off for airtightness should be carried out in pipes within a range not exceeding 25 kPa and 90 mm pipes, and the appropriate compression rate to prevent damage to PE pipes is 30%.