• 제목/요약/키워드: polycystic kidney disease (PKD)

검색결과 19건 처리시간 0.037초

스코티쉬 폴드 고양이 가족에 발생한 상염색체 우성 다낭성 신병 (Autosomal-dominant Polycystic Kidney Disease in a Family of Scottish Fold Cats)

  • 서경원;김새움;안진옥;고예린;한성영;윤화영
    • 한국임상수의학회지
    • /
    • 제27권6호
    • /
    • pp.726-728
    • /
    • 2010
  • 상염색체 우성 다낭성 신병은 페르시안과 페르시안에서 유래된 품종에서 다발하는 질환으로, 스코티쉬 폴드 고양이에서도 간혹 보고된 바가 있다. 5살령의 수컷 스코티쉬 폴드 고양이가 기본적인 혈액 검사와 복부 초음파 등을 통해 다낭성 신병으로 진단 받은 후 3.5 개월 만에 폐사하였다. 이 고양이는 동배 암컷 고양이를 비롯한 3 마리의 암컷 고양이와 교배하여 14마리의 새끼고양이가 있었으며 연령대는 3개월령에서 8년령으로 다양하였다. 상염색체 우성 다낭성 신병인지를 확인하기 위해 변이된 PKD1 유전자에 대한 유전자 검사가 이루어졌다. 또한 복부 초음파를 통해 신장의 낭성 구조물을 확인하는 검사도 이루어졌다. 총 19마리 (수컷: 13마리, 암컷: 6 마리) 에 대한 검사가 이루어 졌으며 연령대는 3개월에서 8년령 사이였다. 검사 결과, 19마리 모두에서 유전자 검사와 초음파 검사 결과가 일치하였고, 이 중 8마리가 상염색체 우성 다낭성 신병으로 진단되었다. 아직까지 한국에서는 고양이의 상염색체 우성 다낭성 신병은 보고 된바 없으며, 본 조사는 가족 단위의 스코티쉬 폴드 고양이에 발생한 상염색체 우성 다낭성 신병에 대한 첫 보고이다.

The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity

  • Park, Eunice Yon June;Baik, Julia Young;Kwak, Misun;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권3호
    • /
    • pp.219-227
    • /
    • 2019
  • Polycystic kidney disease 2-like-1 (PKD2L1), polycystin-L or transient receptor potential polycystin 3 (TRPP3) is a TRP superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. Although the calmodulin (CaM) inhibitor, calmidazolium, is an activator of the PKD2L1 channel, the activating mechanism remains unclear. The purpose of this study is to clarify whether CaM takes part in the regulation of the PKD2L1 channel, and if so, how. With patch clamp techniques, we observed the current amplitudes of PKD2L1 significantly reduced when co-expressed with CaM and $CaM{\triangle}N$. This result suggests that the N-lobe of CaM carries a more crucial role in regulating PKD2L1 and guides us into our next question on the different functions of two lobes of CaM. We also identified the predicted CaM binding site, and generated deletion and truncation mutants. The mutants showed significant reduction in currents losing PKD2L1 current-voltage curve, suggesting that the C-terminal region from 590 to 600 is crucial for maintaining the functionality of the PKD2L1 channel. With PKD2L1608Stop mutant showing increased current amplitudes, we further examined the functional importance of EF-hand domain. Along with co-expression of CaM, ${\triangle}EF$-hand mutant also showed significant changes in current amplitudes and potentiation time. Our findings suggest that there is a constitutive inhibition of EF-hand and binding of CaM C-lobe on the channel in low calcium concentration. At higher calcium concentration, calcium ions occupy the N-lobe as well as the EF-hand domain, allowing the two to compete to bind to the channel.

Effects of PEP-1-FK506BP on cyst formation in polycystic kidney disease

  • Jo, Hyo Sang;Eum, Won Sik;Park, Eun Young;Ko, Je Young;Kim, Do Yeon;Kim, Dae Won;Shin, Min Jea;Son, Ora;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Yeo, Hyeon Ji;Choi, Yeon Joo;Youn, Jong Kyu;Cho, Sung-Woo;Park, Jinseu;Park, Jong Hoon;Choi, Soo Young
    • BMB Reports
    • /
    • 제50권9호
    • /
    • pp.460-465
    • /
    • 2017
  • Polycystic kidney disease (PKD) is one of the most common inherited disorders, involving progressive cyst formation in the kidney that leads to renal failure. FK506 binding protein 12 (FK506BP) is an immunophilin protein that performs multiple functions, including regulation of cell signaling pathways and survival. In this study, we determined the roles of PEP-1-FK506BP on cell proliferation and cyst formation in PKD cells. Purified PEP-1-FK506BP transduced into PKD cells markedly inhibited cell proliferation. Also, PEP-1-FK506BP drastically inhibited the expression levels of p-Akt, p-p70S6K, p-mTOR, and p-ERK in PKD cells. In a 3D-culture system, PEP-1-FK506BP significantly reduced cyst formation. Furthermore, the combined effects of rapamycin and PEP-1-FK506BP on cyst formation were markedly higher than the effects of individual treatments. These results suggest that PEP-1-FK506BP delayed cyst formation and could be a new therapeutic strategy for renal cyst formation in PKD.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

NCAM as a cystogenesis marker gene of PKD2 overexpression

  • Yoo, Kyung-Hyun;Lee, Tae-Young;Yang, Moon-Hee;Park, Eun-Young;Yook, Yeon-Joo;Lee, Hyo-Soo;Park, Jong-Hoon
    • BMB Reports
    • /
    • 제41권8호
    • /
    • pp.593-596
    • /
    • 2008
  • ADPKD (Autosomal Dominant Polycystic Kidney Disease) is characterized by the progressive expansion of multiple cystic lesions in the kidneys. ADPKD is caused by mutations in Ed-pl. consider PKD1 and PKD2. Recently a relation between c-myc and the pathogenesis of ADPKD was reported. In addition, c-Myc is a downstream effector of PKD1. To identify the gene regulated by PKD2 and c-Myc, we performed gene expression profiling in PKD2 and c-Myc overexpressing cells using a human 8K cDNA microarray. NCAM (neuronal cell adhesion molecule) levels were significantly reduced in PKD2 overexpressing systems in vitro and in vivo. These results suggest that NCAM is an important molecule in the cystogenesis induced by PKD2 overexpession.

Suppression of Foxo3-Gatm by miR-132-3p Accelerates Cyst Formation by Up-Regulating ROS in Autosomal Dominant Polycystic Kidney Disease

  • Choi, Seonju;Kim, Do Yeon;Ahn, Yejin;Lee, Eun Ji;Park, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.311-320
    • /
    • 2021
  • Accumulation of reactive oxygen species (ROS) is associated with the development of various diseases. However, the molecular mechanisms underlying oxidative stress that lead to such diseases like autosomal dominant polycystic kidney disease (ADPKD) remain unclear. Here, we observed that oxidative stress markers were increased in Pkd1f/f:HoxB7-Cre mice. Forkhead transcription factors of the O class (FOXOs) are known key regulators of the oxidative stress response, which have been observed with the expression of FoxO3a in an ADPKD mouse model in the present study. An integrated analysis of two datasets for differentially expressed miRNA, such as miRNA sequencing analysis of Pkd1 conditional knockout mice and microarray analysis of samples from ADPKD patients, showed that miR-132-3p was a key regulator of FOXO3a in ADPKD. miR-132-3p was significantly upregulated in ADPKD which directly targeted FOXO3 in both mouse and human cell lines. Interestingly, the mitochondrial gene Gatm was downregulated in ADPKD which led to a decreased inhibition of Foxo3. Overexpression of miR-132-3p coupled with knockdown of Foxo3 and Gatm increased ROS and accelerated cyst formation in 3D culture. This study reveals a novel mechanism involving miR-132-3p, Foxo3, and Gatm that is associated with the oxidative stress that occurs during cystogenesis in ADPKD.