• Title/Summary/Keyword: polycyclic aromatic compounds (PCA)

Search Result 3, Processing Time 0.03 seconds

Crack Growth and Wear Properties of Silica-reinforced Styrene-butadiene Rubber Compounds: Effect of Processing Oil Type (실리카충전 스티렌-부타디엔 고무컴파운드의 균열성장 및 마모특성: 공정오일 종류의 영향)

  • Kang, S.L.;Lee, J.Y.;Go, J.Y.;Go, Y.H.;Kaang, S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.401-407
    • /
    • 2009
  • Commercial grades of solution styrene-butadiene rubbers extended with high aromatic oils having high polycyclic aromatic compounds (PCA) and low PCA oils were used to study the effect of the processing oil particularly on the crack propagation resistance and frictional wear resistance of the vulcanizates. The aromatic oil based vulcanizates exhibited superior fracture behavior over the low PCA oil extended vulcanizates based on tensile and trouser tear tests. Compounds with aromatic oil showed superior crack propagation resistance compared with those containing low PCA oil, especially at the lower ranges of tearing energy. In terms of frictional wear resistance, the aromatic oil extended compounds showed superior performance particularly in the lower frictional work ($W_f$) range but in the higher $W_f$ range the low PCA oil extended vulcanizates performed better.

Atmospheric Concentrations of PAHs in the Vapor and Particulate Phases in Chongju

  • Park, Seung-Shik;Kim, Young-J.;Kang, Chang-H.;Cho, Sung-Yong;Kim, Tae-Young;Kim, Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.57-68
    • /
    • 2006
  • Four intensive seasonal sampling campaigns between October 1998 and October 1999 were undertaken at an urban site of Chongju, in which polyurethane foam (PUF) sampler was used to collect particulate- and vapor-phase polycyclic aromatic hydrocarbons (PAHs). The contribution to total (particulate+vapor) PAH concentration by the vapor phase component exceeded the particulate phase contribution by factor of ${\sim}2.6$. Summed concentrations of phenanthrene (30.9%), pyrene (16.6%), naphthalene (11.3%) and fluoranthene (11.0%) account for significant amounts of the vapor-phase, while chrysene (12.5%), benzo[b]fluoranthene (11.6%), indeno[123-cd]pyrene (9.9%), benzo[ghi]perylene (9.5%), benzo[k]fluoranthene (9.4%), pyrene (8.9%), and benzo[a]pyrene (8.3%) are found to be the most common PAH compounds in the particulate phase. The results from application of principal component analysis to particulate-phase PAH data demonstrate that a combination of PAH and $PM_{2.5}$ inorganic data is a more powerful tracer of emission sources than PAH species data alone. Particulate-phase PAH species were found to be associated predominantly with emissions from diesel engine vehicles and incineration.

Survey on Concentration Characteristics of Polycyclic Aromatic Hydrocarbons in Soil in Seoul (서울시 토양 중 다환방향족탄환수소의 농도특성에 관한 연구)

  • Kim Dong-Hwan;Ok Gon
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2005
  • Soil is one of the most fundamental elements as well as with water and air in studies associated with the environment, in addition, it is one of the important environmental mediums that constructs a basis of the bio­logical system and performs various roles of matter circulation. This study was carried out in Seoul, in May 2000 to evaluate variation in the concentration levels and distribution characteristics for PAH compounds in soil. Soil samples were collected from 33 sites covering traffic, factory, incineration and mountain groups and the PAHs were analyzed. The results show a wide dis­tribution range of PAHs concentrations between 14.66 ng/g and 1,219.35 ng/g. The highest concentration levels exist at Sungsu-2 of the factory group (FS-2). Daemo-3 of the Mountain group (MD-3) presents the lowest levels as compared with the other sites. PAH compounds including mutagenic and carcinogenic materials show high concentrations in the traffic and factory groups and a high ratio in the mountain group. Besides, these compounds absorbed with micro particles might be spread out over a wide region associated with particles' movement and diffusion. After principal component analysis of the soil samples, the results indicated that the sources of PAHs in the soil were divided into two groups, pesticides and vehicles.