• Title/Summary/Keyword: polycarboxylate-type superplasticizer

Search Result 28, Processing Time 0.023 seconds

Influence of Polycarboxylate type Superplasticizer on the Fluidity and Rate of Heat Liberation of Cement Paste (시멘트페이스트의 유동성 및 수화발열속도에 미치는 폴리카르본산계 고성능AE감수제의 영향)

  • Daiki, Atarashi;Song, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.813-816
    • /
    • 2008
  • Polycarboxylate-type superplasticizer is widely used for producing self-compacting and high-strength concrete and improving concrete durability. This paper discusses the influence of molecular structure of polycarboxylate-type superplasticizer on the fluidity and the rate of heat liberation of ordinary Portland cement paste. The fluidity of cement paste was increased by addition of polycarboxylate-type superplasticizer. The arrival time up to the maximum rate of heat liberation was increased by addition of polycarboxylate-type superplasticizer. The fluidity and the arrival time up to the maximum rate of heat liberation were more influenced by addition of polycarboxylate-type superplasticizer having shorter grafted chain than that having longer grafted chain.

  • PDF

Study on the field application according to the early strength of the concrete admixed with polycarboxylate superplasticizer (폴리카본산계 고성능감수제를 이용한 콘크리트의 초기강도에 따른 현장적용성 연구)

  • Lee Jin Woo;Kim Kyung Min;Bae Yeoun Ki;Lee Jae Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.200-203
    • /
    • 2004
  • In this study, it is examined the properties of flow and early strength of concrete according to superplasticizer. For this experiment, it is analyzed that the flow and strength properties according to the mixture factors, compared with naphthalene superplasticizer(normal & delay type) focused on polycarboxylate superplasticizer. (1) The slump loss of concrete used polycarboxylate superplasticizer showed $4\~8cm$, it is judged that slump loss according to the time lapse can be minimized. (2) The performance of polycarboxylate superplasticizer is about $70\%$ level of the normal naphthalene type, it is superior to the delay type, but the performance showed so lowly. The 28days, early strength didn't differ according to the kind of superplasticizer.

  • PDF

Effect of Superplasticizer on the Early Hydration Ordinary Potland Cement (고성능감수제가 시멘트 초기 수화에 미치는 영향)

  • Na, Seung-Hun;Kang, Hyun-Ju;Song, Young-Jin;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.387-393
    • /
    • 2010
  • To improve concrete quality one of the most widely used chemical admixtures is polycarboxylate type superplasticizer. Unlike lignosulfonate and naphthalene-sulfonate, it has high dispersion property and excellent sustainable dispersion property for cement and concrete. Thus, polycarboxylate type superplasticizer has been widely used as a high-performance water reducing admixture together with silica fume in high-performance concrete and other applications for the dispersion of high-strength concrete over 100 MPa. However, even though there have been many studied on the dispersion of concrete by the structure of polycarboxylate type superplasticizer, there have a few studied that clarified the relationships between its rheological properties and microstructure properties in the early hydration behavior of ordinary portland cement. To investigate the correlations between the rheological properties and microstructure of cementitious materials with polycarboxylate type superplasticizer, this study experimented on the rheology, pore structure, heat evolution, and consistency in early hydration as well as on the compressive strength by early dispersion characteristics.

Study on the Field Application According to the Early Strength of the Concrete Admixed with Polycarboxylate Superplasticizer (조기강도 콘크리트의 현장적용을 위한 고성능감수제의 종류에 따른 특성 연구)

  • Lee, Jin-Woo;Kim, Kyung-Min;Lee, Young-Hwan;Bae, Yeoun-Ki;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.671-674
    • /
    • 2005
  • In this study, it is examined the properties of early strength of concrete mixed with polycarboxylate superplasticizer. For this experiment, it is analyzed that the slump and strength properties according to the mixture factors, compared with cements and superplasticizers of each company and curing temperature($15,\;20^{\circ}C$). (1) The slump loss of concrete used polycarboxylate superplasticizer(rapid strength type) showed $0.5\~1.5cm$, it is judged that slump loss according to the time lapse can be minimized. (2) The performance of polycarboxylate superplasticizer kept up consistency and accelerated strength development. it is possible to reveal 12MPa within $18\~20$hours at $20^{\circ}C$ curing, but impossible within 24hours at $15^{\circ}C$. (3) It is necessary to studies about rapid strength development in the low temperature.

  • PDF

Influence of Superplastisize Types on Hydration of Cement with Silica Fume (고성능 감수제 종류에 따른 실리카흄이 혼입된 시멘트 수화 특성)

  • Kang, Hyun-Ju;Song, Myong-Shin;Park, Jong-Hun;Song, Su-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.504-509
    • /
    • 2011
  • In this study, the effect of superplasticizers on the dispersibility and hydration properties of cement with silica fume were investigated. Superplasticizers are used Naphthalene type, Ligno-sulfate type and polycarboxylate type. Compared with plastic viscosity of cement paste without superplasticizers(Plain), plastic viscosity of cement paste with superplasticizers are reduced and yield stress of cement pastes with each superplasticizer is increased rather than Plain. And then, plastic viscosity of cement paste with Naphthalene type superplasticizer was the least of all types. Compared with other two types, setting and hydration of cement paste with Polycarboxylate type(PC) superplasticizer is very fast. At compressive strength after 3-day, PC is higher than other two types, But, compressive strength of after 7-day and 28-day, PC is smaller than other two types.

Fluidity and Strength Properties of Non-Sintered Cement Mortar according to the Addition of Superplasticizer (감수제 첨가에 따른 비소성 시멘트 모르타르의 유동성 및 강도 특성)

  • Jang, Kyung-Su;Na, Hyeong-Won;Byun, Hui-Jae;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.441-450
    • /
    • 2022
  • In this study, the fluidity and strength characteristics of NSC mortar according to the type and rate of addition of superplasticizer were analyzed to secure the fluidity of NSC composed of only slag and ash. Through the flow test, it was found that the fluidity of NSC was related to the basicity according to the binder condition, and the lower the reactivity, the higher the fluidity. When polycarboxylate is added, NSC mortar is considered to be more advantageous than plain mortar in terms of securing fluidity. As a result of the strength tests of NSC mortar containing Lignin or Polycarboxylate superplasticizer, it was found that the strength tends to increase as the basicity increases. In addition, when polycarboxylate is added, it is judged that the NSC mortar can secure adequate fluidity and strength at the same time. Through this experiment, an appropriate binder condition that satisfies the flowability while securing the strength was derived.

Effect of Blastfurnace Slag Fineness on the Rheological Properties of Cement Pastes (고로슬래그 분말도가 시멘트 페이스트의 유동특성에 미치는 영향)

  • Song, Jong-Taek;You, Chang-Dal;Byun, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.103-109
    • /
    • 2007
  • In this study, the rheological properties of cement pastes containing blastfurnace slag of different fineness were investigated. The fluidity of cement pastes with low Blaine value blastfurnace slag was increased with decreasing the plastic viscosity and the yield stress of pastes. And the optimum dosage of polycarboxylate type superplasticizer to the cement pastes was confirmed according to the fineness and the replacement ratio of blastfurnace slag. All cement pastes showed the thixotropy behavior. And also it was formed that the segregation range of cement pastes was occurred below $10D/cm^2$ of the yield stress and below 350 cPs of the plastic viscosity by the coaxial cylinder viscometer.

Effects of Polycarboxylate Type Superplasticizer on the Hydration of Ordinary Portland Cement (보통포틀랜드시멘트의 수화 반응에 미치는 폴리카복실레이트계 고유동화제의 영향)

  • 류호석;송종택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.417-424
    • /
    • 2004
  • Polycarboxylate type superplasticizers (PCA) with different graft chain (Polyethylene oxide) length were synthesized by Methoxypoly (ethyleneglycol)monomethacrylate (MPEGMAA) and methacrylic acid (MAA). The effects of PCA on the hydration of Ordinary Portland Cement (OPC) were investigated by Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) techniques. The effect of graft chain length of PCA on the hydration of OPC was different at early age, but, at long age, was similar. The ratio of relative peak intensity, (I[001]/I[101]), of Ca(OH)$_2$ compared with OPC also was reduced by PCA addition.

Effect of Polycarboxylate Type Superplasticizer on the Rheological Properties of Mortar (고성능AE감수제를 이용한 모르타르의 유동특성 평가에 관한 연구)

  • Jung, Youn-Sik;Lim, Chae-Yong;Yang, Seung-Kyu;Um, Tae-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.801-804
    • /
    • 2006
  • Polycarboxylate type superplasticizers(PC) have got widely used for making not only high performance concrete but low grade concrete as well. It is known that fluidity of cement with PC is affected by the characteristics of cement especially sulphate ion concentration and hydration activity. But the characteristics of PC also affect the fluidity. The fluidity of cement mortar with various types of PC was measured and critical dosage(CD) and dispersing ability(DA) was calculated. CD and DA is strongly dependent on the type of PC. And the variation of fluidity on time was affected by the type of PC also. So, it is advisable to investigate the property of PC before production of concrete and adjust it to meet the requirements of concrete depending on the materials, the time of transport and so on.

  • PDF