• 제목/요약/키워드: polycarbonate(PC)

검색결과 261건 처리시간 0.027초

Rheological, Morphological and Electrical Properties of Polycarbonate/Multi-walled Carbon Nanotube Composites

  • Han, Mi-Sun;Sung, Yu-Taek;Chung, Ji-Woong;Kim, Woo-Nyon;Lee, Heon-Sang;Kum, Chong-Ku
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.220-220
    • /
    • 2006
  • Rheological and electrical properties of the polycarbonate (PC) / multi-walled carbon nanotube (MWNT) were studied. The MWNT was funtoinalized by treating with the hydrogen peroxide ($H_{2}O_{2}$). The electrical conductivity showed higher value for the PC/MWNT ($H_{2}O_{2}$ treated, freeze drying) composites compared that of the PC/MWNT ($H_{2}O_{2}$ treated, thermal drying) composites. From the results of the morphological, rheological, and electrical properties of the PC/MWNT composites, it is suggested that the electrical and rheological properties of the PC/MWNT composites are affected by the MWNT-MWNT network structure which is related with the MWNT morphologies such as the degree of aggregation and aspect ratio of the MWNT.

  • PDF

The Effect of Oligomer Blending on the Flow Properties of Polycarbonate

  • Cho, Sung-Hwan;Kim, Sun-Mi;Cho, Mi-Suk;Lee, Young-Kwan;Kim, Dong-Min;Kim, Whan-Gi
    • Macromolecular Research
    • /
    • 제17권12호
    • /
    • pp.1021-1024
    • /
    • 2009
  • We successfully prepared high-flow polycarbonate (PC) by blending commercial PC with a low molecular weight PC oligomer. The oligomer was synthesized by the addition of a large quantity of mono functional phenol groups, and the chain end group was reacted with p-tertiary butyl phenol (PTBP) to block the reactivity. The viscosity average molecular weight ($M_v$) for the oligomer was about 4,000-5,000 g/mol, compared to ~19,000 g/mol for the PC blend obtained by blending 10 wt% of the prepared oligomer with the commercial grade PC ($M_v$ of 21,000 g/mol). The blended PC had a melt flow index of 45, which is 2.5 times higher, and a processing temperature that was $20^{\circ}C$ lower, than that of commercial grade PC having a similar $M_v$.

Sol-Gel 법에 의한 Polycarbonate 시트에 적용 가능한 고굴절률을 보이는 하드코팅 용액의 제조 (Preparation of Hard Coating Solutions with High Refractive Index for Polycarbonate Sheet by the Sol-Gel Method)

  • 정일엽;조경인;정상혁;박효남;송기창
    • Korean Chemical Engineering Research
    • /
    • 제45권4호
    • /
    • pp.335-339
    • /
    • 2007
  • 투명 polycarbonate(PC) 시트의 낮은 표면강도 문제를 극복하기 위해, 고굴절률을 보이는 유-무기 혼성 하드코팅 용액을 Sol-Gel 법을 이용하여 제조하였다. 코팅용액은 무기물 티타니아의 전구체인 TTIP(titanium tetraisopropoxide)에 유기물을 함유한 화합물인 GPTMS[(3-glycidoxypropyl) trimethoxysilane]를 첨가하여 제조하였다. 그 후 기재인 PC 시트에 스핀 코팅시키고, 열 경화 시켜 고굴절률을 보이는 하드코팅 필름을 제조 하였다. 코팅 용액 중의 GPTMS 함유량을 변화시킴에 의해 1.53-1.61의 굴절률을 갖는 코팅 막의 제조가 가능하였다. GPTMS의 첨가량이 증가할수록 코팅막의 굴절률은 감소하였으나, 연필경도는 증가하였다.

전자 빔 조사를 통한 폴리카보네이트 표면개질 및 Cr박막 접착력 증대 효과 (The Effect of Electron Irradiation on the Surface Modification of Polycarbonate and Adhesion of Cr Thin Films)

  • 정철우;성영종;임성열;신기욱;신창호;김선광;김준호;유용주;김대일
    • 열처리공학회지
    • /
    • 제23권1호
    • /
    • pp.17-22
    • /
    • 2010
  • The enhancement of adhesion for Cr film on polycarbonate (PC) substrate with electron irradiation treatment was considered. The electron treatment changes the contact angle of the PC substrates. As increase the electron energy from 300 eV to 900 eV, the contact angle decreases from $90^{\circ}$ to $60^{\circ}C$. It is supposed that electron treatment changes the chemical property of PC substrate into hydrophilic one. The micro surface roughness was also affected by electron treatment. The PC substrates irradiated with intense electron beam of 900 eV show the rougher surface than those of other PC substrates. Cr thin films deposited on the PC substrate treated with electron irradiation at 900 eV show the higher adhesion than that of the Cr thin film deposited untreated bare PC substrates.

Methylene Chloride/1,3-Dioxolane 혼합 용매에 의한 용액 가공 폴리카보네이트 필름의 결정화 (The Crystallization of Polycarbonate Film Using Methylene Chloride/1,3-Dioxolane as a Solution Casting Co-Solvent)

  • 김환기;김재현;김성도;한준희;강호종
    • 폴리머
    • /
    • 제32권5호
    • /
    • pp.483-488
    • /
    • 2008
  • 광학용 폴리카보네이트 필름 제조에 사용되는 methylene chloride/1,3-dioxolane 혼합 용매가 폴리카보네이트 결정화에 미치는 영향에 대하여 살펴보았다. Methylene chloride에 환경 친화성 용매인 1,3-dioxolane을 혼합한 co-solvent를 용액 캐스팅 PC 필름 가공의 용매로 사용하는 경우, 혼합된 1,3-dioxolane에 의하여 필름 건조 시 용매 제거 속도가 느려져 PC필름의 결정화를 유발시킴을 알 수 있었다. 이러한 결정화 현상은 용매 조성비 및 용매 건조 온도를 조절하여 용매 제거 속도를 증가시킴으로 최소화할 수 있음을 확인하였다. PC의 결정화는 PC 필름의 표면 거칠기를 증가시키고 이는 필름의 광학 특성을 감소시키는 요인으로 작용함을 알 수 있었다.

극초단 레이저를 이용한 PC-TEMs 초정밀 가공에 대한 연구 (Polycarbonate Track-Etched Membrane Micromachining by Ultrafast Pulse Laser)

  • 최혜운
    • 한국정밀공학회지
    • /
    • 제28권1호
    • /
    • pp.24-30
    • /
    • 2011
  • PC-TEMs (Polycarbonate Track-Etched membranes) were micro-drilled for biomedical applications by ultrafast pulsed laser. The ablation and damage characteristics were studied on PE-TEMs by assuming porous thin membranes. The experiments were conducted in the range of 2.02 $J/cm^2$ and 8.07$J/cm^2$. The ablation threshold and damage threshold were found to be 2.56$J/cm^2$ and 1.14$J/cm^2$, respectively. While a conical shaped drilled holes was made in lower fluence region, straight shaped holes were drilled in higher fluence region. Nanoholes made the membrane as porous material and ablation characteristics for both bulk and thin film membranes were compared.

Crystallization-induced Sequential Reordering in Poly (trimethylene to rephthalate)/Polycarbonate Blends

  • Bae, Woo-Jin;Jo, Won-Ho;Park, Yeun-Hum
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.145-149
    • /
    • 2002
  • Transesterification between poly(trimethylene terephthalate) (PTT) and bisphenol-A-polycarbonate (PC) is studied by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy. When the blend of PTT/PC is annealed at higher temperatures, the samples do not show any melting peak at an initial stage, indicating the samples completely lose their crystallinity due to the formation of random copolymers. However, when the random copolymer is annealed at temperatures lower than the melting temperature of PTT, a melting peak is observed, indicating that the random copolymers are sequentially reordered. The melting point and the heat of fusion of crystals formed from the crystallization-induced sequential reordering depend upon the annealing temperature and time. The average sequence length determined from NMR is increased as the blocks are regenerated.

열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링 (Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process)

  • 란 슈하이;이혜진;이형욱;송정한;이수훈;준니;이문구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

에폭시 수지로 상용화된 Nylon 6와 비스페놀-A PC 블렌드의 열적거동 (Thermal Behavior of Nylon 6 and Bisphenol-A Polycarbonate Blends Compatibilized with an Epoxy Resin)

  • Abdrhman, Mabrouk J.M.;Zhang, Liye;Zhou, Bing;Li, Hangquan
    • 폴리머
    • /
    • 제32권6호
    • /
    • pp.523-528
    • /
    • 2008
  • Diglycidyl ether of bisphenol-A (DGEBA) was selected as a compatibilizer in Nylon 6 and bisphenol-A polycarbonate (PC) blends. SEM revealed a much finer morphology in the presence of DGEBA. The thermal properties, such as glass transition, melting point, crystallization temperature and rate, of the blends were examined using DSC. Overall, the introduction of DGEBA caused a strong dependence of these thermal properties on the composition due to compatibilization.

Miscibility of Branched Polycarbonate Blends with Poly(ethylene-co-1,4-dimethyl cyclohexane terephthalate) Copolyesters

  • Song, Jeong-Oh;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.640-645
    • /
    • 2007
  • The phase behavior of branched polycarbonate (BPC) blends with poly(ethylene terephthalate-co-1,4-dimethyl cyclohexane terephthalate) copolyesters (PECT), as well as their rheological properties, were assessed. Even though BPC blends with PECT prepared by solvent casting proved to be immiscible, BPC and PECT copolyesters containing 1,4-dimethyl cyclohexane (CHDM) from 32 to 80 mole% formed homogeneous mixtures upon heating. The homogenization temperatures of the blends decreased with increasing CHDM content in PECT. The interaction energies of the BPC-PECT pairs calculated from the phase boundary in accordance with the lattice-fluid theory were positive and also decreased with increasing CHDM content in PECT. It was shown that the phase homogenization of these blends occurs upon heating when the combinatorial entropy term, which is favorable for miscibility, overcomes unfavorable energetic terms at elevated temperatures. A novel product, which is not limited by the drawbacks of linear polycarbonate (PC) and evidences processability superior to that of the PC/PECT blends, can be developed via the blending of BPC and PECT.