• Title/Summary/Keyword: polycarbonate(PC)

Search Result 261, Processing Time 0.028 seconds

Stress Distribution of Indium-tin-oxide (ITO) Film on Flexible Substrate by Bending process (Flexible 기판 위의 Bending 처리에 따른 ITO 필름의 Stress 분포 특성)

  • Park, Jun-Back;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Park, Sung-Kyu;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.181-184
    • /
    • 2003
  • In this paper, we investigated the position-dependent stress distribution of indium-tin-oxide (ITO) film on Polycarbonate (PC) substrate by external bending force. It was found that there are the maximum crack density at the center position and decreasing crack density as goes to the edge. In accordance with crack distribution, it was observed that the change of electrical resistivity of ITO islands is maximum at the center and decrease as goes to the edge. From the result that crack density is increasing at same island position as face-plate distance (L) decreases, it is evident that the more stress is imposed on same island position as L decreases.

  • PDF

Electrical properties of polymers by ion implantation (이온주입에 의한 폴리머의 전기특성 조사)

  • Yang, Dae-Jeong;Kim, Bo-Young;Lee, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.203-207
    • /
    • 2003
  • Ion implantation has been shown to significantly alter the surface properties of polymers. Polycarbonate(PC) and Polyimide(PI) were irradiated with 50keV $N^+$, $Xe^+$ ions to the fluences of $1{\times}10^{16}{\sim}3{\times}10^{17}\;cm^2$. The ion beam-induced modification of the electrical conductivity and the related structural features have been studied for polymers. The beam-induced chemical and structural modifications have been investigated by using X-ray Phooelectron Spectroscopy(XPS) and Fourier Transform-Infrared Spectroscopy(FT-IR), while the modification of the electrical properties was followed by performing a complete set of sheet resistance measurements. Samples irradiated at higher fluence showed a good conductivity, with a saturation value of $10^7{\Omega}/sq$. The XPS data demonstrate that the modification of the electrical properties is due to the progressive formation with increasing ion fluence of a dense amorphous carbon network, while PF-IR data reveal that material degradations through bond breaking are the main effects.

  • PDF

Development of the Low Cost Assembled Separator (저가형 조립 분리판의 개발)

  • Hwang, Yong-Sheen;Lee, Ju-Hyung;Ji, Sang-Hun;Park, Jun-Ho;Lee, Dae-Young;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.247-250
    • /
    • 2009
  • This study considers the feasibility of using the low cost assembled separator. The graphite plate has been widely used as the separator in the field of PEMFCs(Polymer electrolyte membrane fuel cell) industry because of its excellent material properties such as good corrosion resistance, good electrical conductance and so on. However, there are some problems for the commercialization due to its poor cost effectiveness for the large volume manufacturing and lack of mechanical strength. From this respect, this study has focused on the manufacturing technology in order to reduce the price for the commercialization of separator. This study also shows that the assembled separator of the suggested structure, which is composed of grafoil and PC(PolyCarbonate) materials, could be manufactured at low cost enough for the mass production. The flow fields produced by cutting foils and the base plates of the separators were simply made by mechanical work.

  • PDF

An Experimental Study on the Replication Ratio of Micro Patterns considering the Thickness Change of Injection Molded Parts (사출성형품의 두께변화에 따른 마이크로 패턴의 전사율에 관한 실험적 연구)

  • Jeong, C.;Kim, J.D.;Kim, J.S.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.176-179
    • /
    • 2009
  • Injection molding is one of the most general manufacturing processes of polymers. The deformation of final molded parts occurs because of the change of temperature and pressure during injection molding process. The deformation of injection molded parts depends on many operational conditions, such as, melt temperature, injection speed, mold temperature, packing pressure, and the structure of mold. In the present paper, injection molding experiments were performed to find the process conditions to affect the average shrinkage in thickness direction and the replication ratio of fine patterns on the surface for the final injection-molded LGP samples. As a results, in the cases of PC(Polycarbonate), when the melt temperature was under $285^{\circ}C$, both average shrinkage and replication ratios were mainly influenced by packing pressure. However, the replication ratio was more influenced by melt temperature than packing pressure for the cases of higher melt temperature.

  • PDF

Performance of Liquid-Cooled Cold Plates for Multiple Heat Sources in a Humanoid Robot (인간형 로봇 내부의 다중 열원에 대한 수냉식 냉각판의 성능)

  • Karng, Sarng-Woo;Kim, Seo-Young;Moon, Jong-Min;Hwang, Kyu-Dae;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2053-2058
    • /
    • 2008
  • It was investigated thermal performances on two array types of a serial circulation and a two-way parallel circulation for six water-cooled cold plates covered with non-metallic material (polycarbonate, PC) to reduce weight of the cooling devices for humanoid robot cooling. Six cold plates attached on $10{\times}10\;mm^2$ copper base : $0.5{\times}0.5\;mm^2$ pin-finned surfaces of 1.5 mm high with 0.5 mm array spacing, was mounted on six copper heating blocks with isothermal conditions of $50{\sim}90^{\circ}C$, respectively. In order to compare thermal characteristics according to two circulation types, the surface temperatures of heating blocks and the cooling water temperatures at inlets and outlets of cold plates were measured. From the results, it was found that a two-way parallel circulation was better performance than a serial circulation in terms of total thermal resistance, total heat transfer rate, and surface temperature rises from $1^{st}$ heating block to last one for six multiple cold plates.

  • PDF

고분자 소재의 표면보호를 위한 DLC 코팅 기술

  • Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.265-265
    • /
    • 2010
  • 고분자 소재(polycarbonate; PC)의 표면을 보호하고 광학적 특성을 유지하기 위해 산화물 다층 박막과 비정질 탄소 박막(diamond-like carbon; DLC)을 전자빔 증착(e-beam evaporation)과 이온빔 증착(ion-beam deposition)을 이용하여 고분자 소재에 코팅하였다. 전자빔 증착으로 코팅된 실리콘과 티타늄 산화물 다층 박막은 소재 표면에서 가시광선의 반사율을 낮추는 효과를 가지고 있어 다양한 광학 코팅분야에서 이용되고 있다. 비정질 탄소 박막은 경도가 높고 마찰계수가 낮기 때문에 기계부품의 수명향상을 향상하기 위해 주로 사용되며, 본 연구에서는 고분자 소재의 최상층에 코팅하여 보호막으로 이용하였다. 고분자 윈도우에 산화물 다층 박막을 코팅하면 코팅되지 않은 기판과 비교하여 투과율이 향상되었으며 보호막으로 코팅된 비정질 탄소 박막에 의해서 일어나는 투과율 저하를 부분적으로 상쇄하는 효과를 보였다. 산화물 다층 박막의 수는 광학 분야에서는 주로 5-7층을 이용하지만 고분자 소재는 코팅 공정이 길어지면 열 변형이 일어날 수 있기 때문에 산화막의 층수를 낮추는데 초점이 맞춰졌다. 5층과 3층으로 코팅된 산화물 박막 모두 투과율이 향상되었으며 3층에 비해서 5층의 투과율 향상효과가 큰 것으로 나타났다. 고분자 소재의 투과율은 평균 약 90%이었으며 산화물 다층 박막과 비정질 탄소 박막을 코팅한 후 투과율이 약 81%로 측정되었다. 비정질 탄소 박막과 산화물 다층 박막을 적절하게 설계하고 코팅한다면 고분자 소재의 보호막으로 이용될 수 있을 것으로 판단된다.

  • PDF

An Analysis of Damping Coefficients for Capillary Type Orifices on a Curved Stabilizer used in a High Speed Rotating Flexible Optical Disk System (고속 회전 유연 디스크 시스템에서 곡면 안정기에 가공된 모세관형 오리피스의 감쇠계수 해석)

  • Song, Ki-Wook;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • In the last couple of years, the flexible optical disk(FOD) system that consists of a thin polycarbonate(PC) film of 95 ${\mu}m$ thick, a rigid stabilizer, and a high speed spindle motor has been spot-lighted as the next-generation optical system for archival use of digital data. The air film between the rotating disk and stabilizer provides a means for damping out the lateral disk vibrations. However, its damping-capability drops significantly as the rotational speed of the disk exceeds a specific limit and, eventually, the disk vibration propagates inward causing the whole span of the disk exhibits large vibration amplitudes. Based on the numerical simulations as well as the experimental results, the present work aims to evaluate the damping coefficient of the air-film near the outer region of the disk where the capillary type orifices are applied to the edge of the curved stabilizer.

Analysis on Insulation of Wind Environment and Greenhouse Cover Materials Insulation for Advanced Greenhouse Energy Design in Saemangeum Reclaimed Land (새만금 간척지 첨단온실 에너지 설계를 위한 풍환경 및 온실 피복재의 영향 분석)

  • Hyo-Jae Seo;Il-Hwan Seo;Deuk-ha Noh;Haksung Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.57-63
    • /
    • 2023
  • The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.

Influence of Superplasticizers on Fluidity and Compressive Strength of Alkali Activated Slag Mortar (유동화제가 알칼리 활성 슬래그 모르타르의 유동 특성 및 압축 강도에 미치는 영향)

  • Kim, Dae-Wang;Oh, Sang-Hyuk;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • The cement industry brought very severe environment problems with massive carbon dioxide during its production. To solve this problem, attempts on Alkali-Activated Slag (AAS) concrete that perfectly substitutes industrial by-products such as ground granulated blast furnace slag (GGBFS) for cement are being actively made. AAS concrete is possible to have high strength development at room temperature, however, it is difficult to ensure the working time due to the fast setting time and the loss of workabillity because of the alkali reaction. In this study, the early age properties of alkali activated slag mortar are investigated to obtain the fundamental data for AAS concrete application to structural members. The water-binder ratio (W/B) was fixed at 0.35 and sodium hydroxide and waterglass as alkali activator was used. The compressive strength, the flow and the ultrasonic pulse velocity were measured according to the type of superplasticisers, which were naphthalene(N), lignin(L), melamine(M) and PC(P), up to a maximum of 2 percent by the mass of GGBFS. The results showed that adding melamine type of superplasticizer improved the fluidity of AAS mortar without decreasing the compressive strength, while naphthalene and polycarbonate type of superplasticizer had little effect on the fluidity of AAS mortar.

  • PDF

Antimony Content of Natural Mineral Water in Korean Market and Migration into Water from Bottle Material (국내유통 먹는샘물 중의 안티몬 함량 및 용기 이행 특성)

  • Huh, Yujeong;Yang, Mihee;Cho, Yangseok;Ahn, Kyunghee;Lee, Younhee;Chung, Hyunmee;Kwon, Ohsang;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.199-205
    • /
    • 2014
  • The knowledge on the migration of antimony (Sb) from PET bottles into the water is of greate concern. Antimony in all bottled water marketed in korea and in raw water was analyzed. The detection rate of antimony in total bottled water was 88 % and 100% in PET (Polyethylene terephthalate, PET), 55% in PC (Polycarbonate, PC) bottled water. 55% of raw water contained antimony. The average concentration of Sb in PET bottled water was $0.39{\mu}g/L$, higher than PC bottles ($0.20{\mu}g/L$) and the raw water ($0.22{\mu}g/L$). The migration of Sb into water that is stored in different conditions (room temperature, $45^{\circ}C$, and direct sunlight exposure) was investigated for 180 days. The migration tendency increased with the storage time and temperature. PET bottles showed a sharp increase of Sb concentration at $45^{\circ}C$, but there was no differences between the room temperature and sunlight exposure. The Sb migration in all simulated solution(deionized water, 4% acetic acid, and 20% ethanol) also increased with storage time and temperature. The Sb migration values ranged from 0.35 to $0.49{\mu}g/L$ in all simulated solution, which was far below the permissible korean migration level of $40{\mu}g/L$. There was a tendency that the number of re-use of a bottle and the amount of leaching were in inverse proportion.