• Title/Summary/Keyword: polybutadiene

Search Result 84, Processing Time 0.027 seconds

Improvement of the Filler Dispersion in Silica-Filled SBR Compounds Using Low Molecular Weight Polybutadiene Treated with Maleic Anhydride (Maleic Anhydride로 처리된 저분자량 폴리부타디엔을 이용한 실리카로 보강된 SBR 배합물에서 충전제 분산성 항상)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Influence of low molecular weight polybutadiene (liquid PB) treated with maleic anhydride on properties of a silica-filled SBR compounds was studied. Silica dispersion was improved by adding liquid PB. The liquid PB treated with maleic anhydride (liquid MAPB) was found to be more effective for the improvement of silica dispersion than the liquid PB without maleic anhydride (liquid NPB). Viscosity of the SBR compound decreased by adding the liquid PB. The crosslink density decreased with increase of the liquid PB content and the cure rate became slower with increasing the liquid PB content. Considering the experimental results, it was believed that addition of small amount of the liquid PB (less than 5 phr) was desirable to improve properties of silica-filled SBR compounds.

Properties of Melamine Resins Mixed with Wood-Flour and Polybutadiene Rubber (목분 및 폴리부타디엔 고무를 혼합한 멜라민 수지의 물성)

  • Choi, Sang-Goo;Suh, Won-Dong;Park, In-Sook
    • Elastomers and Composites
    • /
    • v.29 no.5
    • /
    • pp.436-443
    • /
    • 1994
  • Melamine resin was mixed with polybutadiene rubber or wood flour in the ranges of $5{\sim}75%(wt.%)$. For mixtures, physical and thermal properties were tested experimentally. Physical properties were mainly influenced on the dispersed states of rubber or wood flour. The highest flexural and impact strength were obtained at wood flour content $65{\times}67%$. Rubber was homopolymerized by hardner, or partially copolymerized with melamine resin. At rubber content $3{\sim}6%$, cured products represented lower modulus without decreasing mechanical strength.

  • PDF

Basic Studies on Propellant Casting (II). Effects of Solid Additives on Urethane Polymerization (추진제 성형에 관한 기초연구 (제2보). 우레탄 중합에 미치는 첨가제 효과)

  • Young Gu Cheun;Ik Choon Lee;Shi Choon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.214-218
    • /
    • 1981
  • Kinetic studies were carried out on urethane polymerization reaction of hydroxyl-terminated polybutadiene with isophorone diisocyanate under presence of Hexogen as solid additive. The rate was found to increase with the amount of Hexogen added. However the rate acceleration was not a catalytic effect but solely due to an increase of activation entropy. The reaction was a good 2nd order process with nearly constant activation energy of 8.4 kcal/mole.

  • PDF

Photooxidation of BR Vulcanizate Using High Pressure Mercury Lamp

  • Kim, Eunha;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Polybutadiene rubber (BR) has been well known that its physical and chemical properties are changed when it is exposed to ultraviolet light undergoing photooxidation. In this study, photooxdiation process of BR vulcanizate was investigated using a high pressure mercury lamp used as an outdoor lighting, which has high UV radiation efficiency and reasonable cost. Discoloration and crack formation of photooxdized BR vulcanite surface were examined using an image analyzer. Change of chemical functional groups of BR vulcanite surface by photooxidation was investigated using ATR-FTIR, and variation of the crosslink density with the UV irradiation time was investigated. By increasing the UV irradiation time, the crosslink density steeply increased after a period of time and did not increase any more. Formation of hydroxyl (~OH) and carbonyl (~C=O) groups on the BR vulcanizate surface increased and the1,4-cis unit was converted to the 1,4-trans unit as the photooxidation was proceeded.

On the Pyrolysis of Polymers III. Identification of Gases from Rubber Pyrolysis by Gas Chromatography (高分子物質의 熱分解에 關한 硏究 (第3報) 合成고무類의 熱分解生成物의 Gas Chromatography에 의한 檢索과 合成고무 確認에의 利用)

  • Chwa-Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 1963
  • Aliphatic hydrocarbon gases from rubber pyrolysis have been identified by gas chromatography with tetraethyleneglycol dimethylether column. Rubbers used in this work are polyisoprene, SBR, NBR, polybutadiene, buthyl rubber, polychloroprene and polyurethane rubber. The chromatogram is characteristic for each polymer. Author proposes a method of identification of synthetic rubbers by gas chromatograph of pyrolyzed gas. Sample is pyrolyzed at $450^{\circ}C$ under nitrogen or more effectively helium and gaseous portion, which eliminated liquid condensate, is passed to the column. The appearance of exclusively large peak of isoprene, isobutylene and carbon dioxide shows the presence of polyisoprene, polyisobutylene and polyurethane, respectively. Large peak of butadiene will appear in case of polybutadiene, SBR and NBR, but SBR can be identified through the styrene peak in gas chromatogram of liquid pyrolyzate and NBR can be identified by the evolution of hydrogen cyanide during pyrolysis. Polychloroprene is identified by the evolution of hydrogen chloride. This method could be applied to the identification of copolymer or polymer blend.

  • PDF

Preparation of Cross-linked Asymmetric Membrane and Control of Its Morphology and Mechanical Property

  • Hong, Byung-Pyo;Ko, Moon-Young;Kwon, Byeong-Min;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Polystyrene-co-divinylbenzene (PS-co-DVB) asymmetric membranes were prepared. In order to control their structure and mechanical properties the degree of cross-linking and the composition of casting solution were varied. The rubber added PS-DVB membranes was also prepared to overcome the mechanical limitation of cross-linked membrane, and their mechanical properties were investigated. It was revealed that the concentration of polymer in the casting solution affected the determination of skin formation. When the PS-co-DVB membrane consists of styrene-butadiene (SB) rubber or liquid polybutadiene (PBD), the structures formed showed that the PS content in the PS/DVB system played an important role in determining the porous sublayer structure.

A Study on Physical Properties of Epoxy Adhesives Modified with Polybutadiene Rubber (Polybutadiene 고무 변성 에폭시 접착제의 물성에 관한 연구)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.26 no.3
    • /
    • pp.193-201
    • /
    • 1991
  • Epoxy resin and CTBN(carboxyl terminated butadiene acrylonitrile) rubber were reacted at $150^{\circ}C$. Epoxy mixtures containing reactant in a ratio $0{\sim}75%(wt%)$ of total liquid component were with dicyandiamide(DICY) at $130{\sim}200^{\circ}C$. Cure, thermal and adhesive properties were investigated in relation to rubber content, cure temperature, hardner content and promoter content. $CTBN{\times}13$ showed better properties in miscibility, curing time and adhesive strength. 2PZ-CNS was more excellent in Tg, and melamine was in adhesive strength. Adhesive strength represented best at rubber content $12{\times}15%$.

  • PDF

Effect of HTPB Binder on Propellant (HTPB 바인더가 추진제에 미치는 영향)

  • Kim, Jeongeun;Ryu, Taeha;Hong, Myungpyo;Lee, Hyoungjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.504-507
    • /
    • 2017
  • The polybutadiene-based HTPB used as the propellant main binder influences the curing reaction rate of the binder and propellant depending on the synthetic batch. The properties of HTPB synthesized in different batches were analyzed and applied to propellants to evaluate the curing reaction rate and mechanical properties. Finally this reaction can also affect mechanical properties of propellant. And the results suggest that proper degree of curing reaction is necessary to obtain better mechanical properties of propellant.

  • PDF

Miscibility and Properties of cis-Polybutadiene/Ethyl-Branched Polyethylene Blends (II)

  • Cho, Ur-Ryong
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.66-72
    • /
    • 2000
  • Cis-Polybutadiene (cis-PBD) and the three polyethylenes (PE's) having different branch content were mixed to investigate crystallinity, thermodynamic interaction parameter(c), and diluents effect. Crys-tallinty of PE's decreased with increasing content of amorphous cis-PBD because of a decrease in both the degree of annealing and kinetics of diffusion of the crystallizable polymer content. The thermodynamic interaction parameter(c) for the three blend systems approximately equals to zero near the melting point. These systems were determined to be miscible on a molecular scale near or above the crystalline melting point of the crystalline PE's. From the measurement of T$\sub$m/ vs. T$\sub$c/ behavior, all the three blends showed a straight line for a plot of T$\sub$m/ vs. T$\sub$c/. This result means that the melting behavior of PE is mainly due to a diluent effect of cis-PBD component.

  • PDF