• Title/Summary/Keyword: polyacrylate fiber

Search Result 9, Processing Time 0.025 seconds

Determination of DBCP and n-Butylbenzene using SPME with GC-MS (SPME-GC-MS를 이용한 DBCP 및 n-Butylbenzene의 분석)

  • Park, Hyun-Mee;Kim, Young-Man;Lee, Dai-Woon;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.471-475
    • /
    • 2001
  • Solid phase microextraction(SPME) with $85{\mu}m$-polyacrylate (PA) and $100{\mu}m$-polydimethylsiloxane(PDMS) fibers, coupled to gas chromatography-mass spectrometry was used to determine 1,2-dibromo-3-chloropropane(DBCP) and n-butylbenzene in water. The conditions affecting the SPME process(i.e, extraction time, injection length, injection temperature, desorption time and temperature) were optimized. The linearity of the calibration curve (correlation coefficient, R) was over 0.99 and the limits of detection of the method were between 1.5 and $10.8{\mu}g/L$. Repeatability of the method was between 10.4 and 14.4 %.

  • PDF

Simultaneous Analysis of 17 Organophosphorous Pesticides in Blood by Automated Head Space-SPME GC/MS (HS-SPME-GC/MS에 의한 혈액중 17종 유기인계 농약의 동시분석법)

  • Rhee, Jong-Sook;Jung, Jin-Mi;Lee, Han-Sun;Yeom, Hye-Sun;Lee, Sang-Ki;Park, Yoo-Sin;Chung, Hee-Sun
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.429-440
    • /
    • 2010
  • HS-SPME-GC/MS was studied and optimized for the determination of 17 orgarnophosphorous pesiticides (OPPs: chlorpyrifos, chlorpyrifos-methyl, demeton-s-methyl, diazinon, dimethoate, EPN, fenitrothion, fenthion, malathion, methidathion, monocrotophos, parathion, phenthoate, phosphamidon, sulfotep, terbufos, triazophos) in blood. Optimum SPME parameters were selected: choice of SPME fiber (85 ${\mu}m$ polyacrylate), pH effect (0.5 N HCl), salt effect ($Na_2SO_4$, 0.2 g; 20%), headspace incubation temperature ($80^{\circ}C$), headspace incubation time (1 min), headspace adsorption time (30 min) and GC desorption time (2 min). These parameters were optimized using HS-SPME autosampler coupled with gas chromatography-mass spectrometry (GC-MS). Method validation was carried out in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and recovery in blood. The assay was linear over 0.5~5.0 mg/l ($r^2$=0.955~1.000). Limit of detection (LOD) and limit of quantitation (LOQ) in blood were determined 0.03~0.3 mg/l (S/N=3) and 0.1~1.1 mg/l (S/N=10), respectively. Relative recovery with 0.5, 1 and 5 mg/l (in blood) were 90.8%, 98.5% and 94.1%, respectively. This method will be applied to the determination of the orgarnophosphorous pesticides in postmortem blood. The proposed protocol can be an attractive alternative to be used in routine toxicological analysis.

Development of an analytical method of organochlorine pesticides in human bloods using head space-solid phase microextraction coupled with gas chromatography/mass spectrometry (HS SPME-GC/MS를 이용한 혈액 중 유기염소계 농약의 분석법 개발)

  • Kang, Tae-Woo;Pyo, Hee-Soo;Hong, Jong-Ki
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.259-271
    • /
    • 2008
  • The analytical method of extracting compounds from human blood to examine accumulated organochlorine pesticides (OCPs) has been widely used the traditional liquid-liquid extraction (LLE) method and solid-phase extraction (SPE) method, yet these methods have certain limitations in purification and usafe of a large amount of sample. In order to overcome the se problems reside in these, solid-phase microextraction (SPME), known as a highly efficient extration method with less samples and relatively simple, was employed to collect 18 different kinds of OCPs in blood as extraction method in this study. To optimize extraction method, we examine various experimental SPME-parameters such as adsorption (fiber type, adsorption time, adsorption temperature, salting out effect), and desorption (desorption time, desorption temperature etc.). From the experimental results, the optimal conditions are as follows: fiber was polyacrylate with $85{\mu}m$, adsorption time was for 5 min, adsorption optimum temperature was at $280^{\circ}C$, and salting out effect was NaCl with 0.1 g. MDL, precision and accuracy was in the ranges of 0.05~0.20 ng/mL, 5.59~13.39%, respedively, and accuracy was -0.5% ~24.5% for all OCPs.

Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(Ethylene Oxide) Separator and a Hydrogel Electrolyte (레이온/폴리에틸렌옥사이드 분리막과 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터 특성)

  • Lee, Hea Soo;Kim, Kwang Man;Jang, Yunseok;Kim, Kwang Young;Yu, Jung Joon;Kim, Jong Huy;Ko, Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • The mechanical and electrochemical properties of poly(ethylene oxide) (PEO)-coated Rayon separator were characterized using potassium polyacrylate (PAAK)-KOH electrolyte. The supercapacitive properties of activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was also tested. As the PEO content increased, the mechanical strength increased. Room-temperature ionic conductivity of over $10^{-2}S\;cm^{-1}$ was obtained at the PEO content lower than 5 wt.%, applicable to a supercapacitor. As a result, the specific capacitance at $1000mV\;s^{-1}$ of the activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was highly stable after 1000th cycle. This was due to high rate-capability provided by the fact that PEO coating could fix the entanglements among fiber filaments of Rayon.

Synthesis and Characterization of Sodium Acrylate and 2-Acrylamido-2- Methylpropane Sulphonate (AMPS) Copolymer Gels

  • Jassal, Manjeet;Chattopadhyay, Ritwik;Ganguly, Debojyoti
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2004
  • A series of superabsorbents based on acrylic acid (AA), sodium acrylate, 2-acrylamido-2-methylpropane sulphonic acid, N,N'-methylene bis-acrylamide (MBA) were prepared by inverse suspension polymerization. These hydrogels were further crosslinked on the surface with polyethylene glycol-600 (PEG-600). The water absorbency or swelling behaviors for these xerogels in water and 0.9% saline solutions, both under free condition and under load were investigated. Absorption characteristics of these hydrogels were found to depend on nature and concentration of crosslinker in the system. It was also found that the saline absorption was significantly improved as the incorporation of AMPS in the polymer was increased. The surface crosslinking introduced in the polymers was found to improve the absorption under load characteristics without lowering the free water absorption capacities of the polymer to a considerable extent.

Optimization of Headspace Sampling Using Solid Phase Microextraction For Volatile Organic Acids in Different Tobacco Types

  • Lee, Jang-Mi;Lee, Jeong-Min;Son, Seong-Ae;Kwon, Young-Ju;Jang, Gi-Chui;Kim, Young-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • A Solid-phase micro extraction(SPME) was evaluated as a tool for headspace sampling of tobacco samples. Several experimental parameters (sampling temperature, pH, and type of SPME fibers) were optimized to improve sampling efficiency in two aspects ; maximum adsorption and selective adsorption of volatile organic acids onto SPME fibers. Among four types of SPME fibers such as PDMS(Polydimethylsiloxane), PA(Polyacrylate), Car/PDMS (Carboxen/Polydimethylsiioxane) and PDMS/DVB(Polydimethylsiioxane/Divinylbenzene) which were investigated to determine the selectivity and adsorption efficiency. A variety of tobacco samples such as flue cured, burley and oriental were used in this study. The effect of these parameters was often dominated by the physical and chemical nature (volatility, polarity) of target compounds. This method allowed us to make important improvements in selectivity and sensitivity. The Car/PDMS fiber was shown to be the most efficient at extracting the 10 selected volatile organic acids. The parameters were optimized: $80^{\circ}C$ adsorption temperature, 30 min of adsorption time, $240^{\circ}C$ desorption temperature, 1 min of adsorption time.

Analysis of Agrochemical Residues in Tobacco Using Solid Phase Microextraction-Gas Chromatography with Different Mass Spectrometric Techniques

  • Lee, Jeong-Min;Jang, Gi-Chul;Kim, Hyo-Keun;Hwang, Geon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • A solid phase microextraction (SPME) method in combination with gas chromatography/mass spectrometric techniques was used for the extraction and quantification of 12 selected agrochemical residues in tobacco. The parameters such as the type of SPME fiber, adsorption/desorption time and the extraction temperature affecting the precision and accuracy of the SPME method were investigated and optimized. Among three types of fibers investigated, polyacrylate (PA), polydimethylsiloxane (PDMS) and polydimethylsiloxane-divinylbenzene (PDMS-DVB), PDMS fiber was selected for the extractions of the agrochemicals. The SPME device was automated and on-line coupled to a gas chromatograph with a mass spectrometer. Mass spectrometry (MS) was used and two different instruments, a quadrupole MS and triple quadrupole MS-MS mode, were compared. The performances of the two GC-MS instruments were comparable in terms of linearity (in the range of 0.01$\sim$0.5 $\mu$g/mL) and sensitivity (limits of detection were in the low ng/mL range). The triple quadrupole MS-MS instrument gave better precision than that of quadrupole MS system, but generally the relative standard deviations for replicates were acceptable for both instruments (< 15%). The LODs was fully satisfied the requirements of the CORESTA GRL. Recoveries of 12 selected agrochemicals in tobacco yielded more than 80% and reproducibility was found to be better than 10% RSD so that SPME procedure could be applied to the quantitative analysis of agrochemical residues in tobacco.

Determination of Plasticizers included in Balloon by Solid Phase Microextraction and Gas Chromatography with Mass Spectrometric Detection (SPME-GC-MS를 이용하여 풍선에 포함된 가소제의 분석)

  • Park, Hyun-Mee;Kim, Ji-Hyun;Ryu, Jae-Chun;Kim, Young-Man;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • Solid-phase microextraction (SPME) with $85{\mu}m$ polyacrylate fiber, coupled to gas chromatography-mass spectrometry was used to analyze the plasticizers contained in balloon samples. The balloons were identified to be made of polyisoprene by IR spectroscopy. The plasticizers extracted from the balloon samples soaked in acetone-added water solvent for an hour were quantified by external standard method using nine kinds of plasticizers. The quantification method was validated for standard plasticizers in the range of $0.25-25{\mu}g/g$. The detection limits were $0.11-0.38{\mu}g/g$ for different plasticizers. The RSDs for the reproducibility of this quantitation method were 3.7-14.2%. A few of balloons included risky level of plasticizer concerned as and endocrine disrupter, and it is necessary to regulate these products.

  • PDF

Comparison of the volatile flavor compounds in different tobacco types by different extraction methods (추출방법에 따른 잎담배 종류별 휘발성 향기성분 특성비교)

  • Lee, Jang-Mi;Lee, Jeong-Min;Lee, Chang-Gook;Bock, Jin-Young;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Traditional simultaneous distillation extraction(SDE) and solid-phase micro extraction(SPME) methods using GC/MS were compared for their effectiveness in the extraction of volatile flavor compounds from different tobacco leaves types(flue-cured, burley, oriental). The major volatile flavor compounds of flue-cured and burley tobacco were similar such as neophytadiene, solanone, megastigmatrienone isomers, ${\beta}$-damascenone and ${\beta}$-ionone. On the other hand, volatile flavor compounds such as norambreinolide, sclareolide were specifically identified in oriental tobacco. Each method was used to evaluate the responses of some analytes from real samples and standards in order to provide sensitivity comparisons between two techniques. Among three types of SPME fibers such as PDMS(Polydimethylsiloxane), PA(Polyacrylate) and PDMS/DVB (Polydimethylsiloxane/Divinylbenzene) which were investigated to determine the selectivity and adsorption efficiency, PDMS/DVB fiber was selected for the extractions of the volatile flavor compounds due to its effectiveness. The qualitative analysis showed that the total amount of volatile flavor compounds in SDE method(130 species) was much more than that in SPME method(85 species). SPME method was more efficient for all the highly volatile compounds than SDE method, but on the other hand, low-volatile compounds such as fatty acids or high-molecular hydrocabons were detected in SDE method. SPME method based on a short-time sampling can be adjusted to favor a selected group compounds in tobacco. Furthermore this results could be used to estimate the aroma characteristics of cigarette blending by using a different type of tobacco with more effectiveness and convenience.