• Title/Summary/Keyword: polyacrylamide gel electrophoresis

Search Result 922, Processing Time 0.03 seconds

Purification and Characterization of a Cyclohexanol Dehydrogenase from Rhodococcus sp. TK6

  • Kim, Tae-Kang;Choi, Jun-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2002
  • Activity staining on the native polyacrylamide gel electrophoresis (PAGE) of a cell-free extract of Rhodococcus sp. TK6, grown in media containing alcohols as the carbon source, revealed at least seven isozyme bands, which were identified as alcohol dehydrogenases that oxidize cyclohexanol to cyclohexanone. Among the alcohol dehydrogenases, cyclohexanol dehydrogenase II (CDH II), which is the major enzyme involved in the oxidation of cyclohexanol, was purified to homogeneity. The molecular mass of the CDH II was determined to be 60 kDa by gel filtration, while the molecular mass of each subunit was estimated to be 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The CDH II was unstable in acidic and basic pHs, and rapidly inactivated at temperatures above $40^{\circ}C$ . The CDH II activity was enhanced by the addition of divalent metal ions, like $Ba^2+\;and\;Mg^{2+}$. The purified enzyme catalyzed the oxidation of a broad range of alcohols, including cyclohexanol, trans-cyclohexane-1,2-diol, trans-cyclopentane-l,2-diol, cyclopentanol, and hexane-1,2-diol. The $K_m$ values of the CDH II for cyclohexanol, trans-cyclohexane-l,2-diol, cyclopentanol, trans-cyclopentane-l,2-diol, and hexane-l,2-diol were 1.7, 2.8, 14.2, 13.7, and 13.5 mM, respectively. The CDH II would appear to be a major alcohol dehydrogenase for the oxidation of cyclohexanol. The N-terminal sequence of the CDH II was determined to be TVAHVTGAARGIGRA. Furthermore, based on a comparison of the determined sequence with other short chain alcohol dehydrogenases, the purified CDH II was suggested to be a new enzyme.

Studies on the Development and the Characteristics of the Powerful Raw Starch Digesting Enzyme (강력한 생전분 분해효소의 개발과 특성)

  • ;;Hajime Taniguchi
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 1990
  • Asp. usumii IAM 2185 was selected as a strain producing the powerful raw starch digesting glucoamylase. The optimum initial pH, the optimum temperature and the optimum cultural time for the enzyme production on wheat bran medium were pH 6-8,25-$30^{\circ}C$ and 72 hrs, respectively. The addition of ammonium nitrate and albumin on wheat bran medium, respectively, increase slightly the enzyme production. The enzyme was purified by ammonium sulfate fractionation, CM-cellulose and DEAE-cellulose column chromatography. The specific activity of the purified enzyme was 34.3 U/mg protein and the yield of enzyme activity was 10.3%. The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis and its molecular weight was estimated to be 67,000 by SDS polyacrylamide disc gel electrophoresis. The isoelectric point for the purified enzyme was pR 3.7. The optimum temperature and optimum pH were $60^{\circ}C$and pH 3.0 and the purified enzyme was stable in the pH range of 1.0-11.0. The purified enzyme was stable below $50^{\circ}C$ and its thermostability was greatly increased by the addition of $Ca^{2+}$. The purified enzyme showed a high hydrolysis rate on various raw starches such as corn, rice, yam, arrow root, sweet potato and glutinous rice.

  • PDF

Purification and Characterization of Fibrinolytic Enzyme Produced by Bacillus subtilis K7 Isolated from Korean Traditional Soy Sauce (한국재래간장 발효균 Bacillus subtilis K7 유래의 혈전용해 Protease의 정제 및 특성)

  • Kim, Doo-Young;Lee, Eun-Tag;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.176-182
    • /
    • 2003
  • An alkaline fibrinolytic protease-producing bacteria was isolated front Korean traditional soy sauce and identified as Bacillus subtilis K7 from the results of analyses of its morphological and physiological properties, $API^{\circledR}$, and Biolog system. The enzyme was purified by 75% ammonium sulfate fractionation, QAE-Sephadex anion and SP-Sephadex cation exchange column chromatography and Sephadex G-100 gel filtration. The specific activity of the purified enByme was 233.9 unit/mg protein and the yield of enzyme was 3.8%. The homogeneity of the purified enzyme was confirmed by polyacrylamide gel electrophoresis. Molecular mass of the enzyme was estimated about 21,500 Da by SDS-polyacrylamide get electrophoresis and gel chromatography. The optimum temperature and pH for the enzyme activity were $40^{\circ}C$ and 9.0, respectively. The enzyme was stable in a pH range of 5.0 to 12.0, and 60% of its activity was lost on heat treatment at $50^{\circ}C$ for 20 min. The activity of the purified enzyme was inhibited by the presence of $Fe^{2+},\;Ag^{2+},\;Cu6{2+}$, iodoacetate, ethylene diamine tetraacetic acid (EDTA), and trans-1,2-diaminocycloheane-N,N,N',N'-tetraacetic acid (CDTA). The results indicates that the enzyme requires a metal ion for its enzymatic activity.

An Evaluation of Changes in the Allergenicity of Kochujang upon Preparation Using Aloe Extract

  • Son, Bo-Kyung;Huh, Yoon-Ee;Kim, Jung-Yun;Noh, Geon-Woong;Lee, Sang-Sun
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.317-322
    • /
    • 2006
  • Soybeans are well-known as allergenic foods. Koreans consume large amounts of soybean foods, such as kochujang, which have gone through the fermentation process. To lower the allergenicity of these foods, we prepared hypo allergenic kochujang with aloe extract (AK). A sensory evaluation was conducted along with a clinical evaluation that used a double-blind, placebo-controlled food challenge (DBPCFC) test These tests were designed to evaluate the acceptability of the fermented foods. In comparison to normal kochujang (NK), AK elicited a higher sensory test score, and the rate of positive reactions in atopic dermatitis patients during the DBPCFC test was reduced. Methods of protein extraction, protein quantitation with sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and protein identification using two-dimensional (2D) gel electrophoresis were performed for both NK and AK to compare the functional factors. We found a reduction in the levels of high molecular proteins even though the bands of the proteins had not entirely disappeared, indicating that the boiling and fermentation process changed the soybean protein patterns. The rate of the reduction of high molecular proteins was more effective in the AK. In conclusion, AK can be recognized as a food with hypoallergenic effect.

Analysis of Double-Stranded DNA Fragments by Capillary Electrophoresis Using Entangle Polymer Solutions in Uncoated Fused Silica Capillary Columns

  • Lee, Jong-Jin;Lee, Kong-Joo
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.384-390
    • /
    • 1998
  • DNA fragments (51-587 bp) were separated by capillary electrophoresis using entangled polymer, hydroxyethylcellulose, in uncoated fused silica capillary columns. The factors affecting the separation of DNA fragments with hydroxyethylcellulose media were evaluated, i.e., the concentration of buffer and entangled polymer, effects of additives (methanol, ethidium bromide, EDTA), temperature, and injection methods. Maximum performance was obtained by adding 5% methanol in 0.5% hydroxyethylcellulose solution at $30^{\circ}C$. Addition of methanol in polymer media increased the resolution of small size DNA fragments (< 100 bp). On the other hand, addition of ethidium bromide and EDTA, which are commonly used in conventional DNA separation, reduced the resolution of DNA fragments in the polymer solution. It turns out that the separation behavior of DNA in entangled polymer is more sensitive to the running condition compared to that in polyacrylamide gel-filled capillary, but the reproducibility of DNA separation in entangled polymer is reliable.

  • PDF

Purification and Properties of Isocitrate Lyase from Saccharomycopsis lipolytica (Saccharomycopsis lipolytica Isocitrate Lyase의 정제와 성질)

  • 조석금
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.420-424
    • /
    • 1987
  • Isocitrate lyase from crude extract of Saccharomycopsis lipolytica ATCC44601 and MX9-11RX8 temperature-sensitive mutant was purified about 54 times and 87 times, respectively by ammonium sulfate fractionation, Toyo peal HW-55F gel filtration and DEAE-Cellulose ion exchange chromatography, The molecular weight of the purified isocitrate lyase from this yeast was estimated to be 230, 000 by gel filtration on Sephadex G-200, and SDS-polyacrylamide Eel electrophoresis showed that the enzyme consisted of four identical or similar subunits with a molecular weight of 59, 000 and the enzyme showed optimum activity at pH 6.9.

  • PDF

An Integrated Process for the Separation and Purification of Biologically Active Proteins from Human Urine (인뇨로부터 유용단백질의 통합 분리정제 공정)

  • 김기용;정광회문흥모
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.287-294
    • /
    • 1993
  • For the purpose of combining the purification processes for several biologically active proteins form human urine, an efficient integrated fractionation procedure has been investigated. The procedure was started by concentration with ultrafiltration and pH precipitation followed by a selectable combination of chromatography on gel filtration, adsorption, ion exchanger, affinity, and reverse phase column. By this process, the purified urokinase, epidermal growth factor and albumin migrated as a single band on SDS-polyacrylamide gel electrophoresis and were fully active. The recoveries of these purified proteins were 48%, 17%, and 46%, respectively.

  • PDF

Solubilization of Proteins from Human Lymph Node Tissue and Two-Dimensional Gel Storage

  • De Marqui, Alessandra Bernadete Trovo;Vidotto, Alessandra;Polachini, Giovana Mussi;De Mattos Bellato, Claudia;Cabral, Hamilton;Leopoldino, Andreia Machado;De Gois Filho, Jose Francisco;Fukuyama, Erica Erina;Settanni, Flavio Aurelio Parente;Cury, Patricia Maluf;Bonilla-Rodriguez, Gustavo Orlando;Palma, Mario Sergio;Tajara, Eloiza Helena
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.216-222
    • /
    • 2006
  • In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT(dithiothreitol) and 0.2% carrier ampholytes; (b) 5M urea, 2M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N, N-dimethyl-3-ammonio-1-propanesulfonate), 40mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7M urea, 2M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.

Pseudomonas sp. CB-33이 생산하는 $\beta$-Xylosidase의 특성

  • Yu, Jin-Whan;Kim, Hyun-Ku;Kim, Chi-Kyung;Lim, Jai-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.197-205
    • /
    • 1996
  • The $\beta$-xylosidase was purified 99- fold from the culture supernatant of Pseudo onas sp. CB-33 by ammonium sulfate precipitation, PEI precipita- tion, DEAE-Sephadex column chromatography, Sephadex G-75 gel filtration chromatography and preparative disc gel electrophoresis. Molecular weight of the enzyme was estimated to be 44,000 by SDS polyacrylamide gel electrophoresis. The enzyme has a pH optimum for activity at 7.0 and is stable over pH 6.5-9.0. The optimal temperature of the enzyme was 45$\circ$C, and its enzymatic activity was completely inactivated at 55$\circ$C for 30 min. Km value of the enzyme for p-nitrophenyl-$\beta$-D-xylopyranoside was calculated to be 4.6 mM. The effect of various reagents on the $\beta$-xylosidase activity was investigated. The enzyme activity was completely inhibited by Hg$^{2+}$, Cu$^{2+}$ and Zn$^{2+}$. The $\beta$-xylosidase was inactivated by tryptophan-specific reagent, N-bromosuccinimide and tyrosine-specific reagent, iodine. The enzyme could degrade xylo-oligosaccharides to xylose and the enzyme was competitively inhibited by xylose. The $\beta$-xylosidase and endoxylanase from Psedomonas sp. CB-33 hydrolized xylan synergically. The purified enzyme also showed $\alpha$-L-arabinofuranosidase activity.

  • PDF

Cloning of $\beta$-glucosidase gene from Cellulomonas sp. into E.coli

  • Kim, Ha-Geun;Kim, Hoon;Park, Moo-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.525.1-525
    • /
    • 1986
  • To clone ${\beta}$-glucosidase gene from Cellulomonas sp. a gene library was constructed using E. coli JM83 pUC9. Among 2,500 pseudotransformants obtained, 20 clones developed yellow color on the p-nitrophenyl- -D-glucopyranoside filter paper These 20 clones were classified into three groups based on the results of activity staining using nondenaturating polyacrylamide gel electrophoresis and restriction enzyme digestions. Among the three groups, only one group containing pCEl plasmid has specificity for cellobiose.

  • PDF