Cloning of β-glucosidase gene from *Cellulomonas* sp. into *E.coli*

김하균*, 김 혼, 박무영

한국과학기술원 생물공학과

To clone β-glucosidase gene from Cellulomonas sp. a gene library was constructed using E. coli JM83 pUC9. Among 2,500 pseudotransformants obtained, 20 clones developed yellow color on the p-nitrophenyl-β-D-glucopyranoside filter paper. These 20 clones were classified into three groups based on the results of activity staining using nondenaturing polyacrylamide gel electrophoresis and restriction enzyme digestions. Among the three groups, only one group containing pCEI plasmid has specificity for cellobiose.

Purification and reaction pattern of cephalaxin synthesizing enzyme from *Acetobacter turbidans*

Sang-Moo Kang*, June-Hoe Kim,
Deog-Jung Kim & Young-Jun Kim*

KAIST

*Korea Steel Chemical Co., Ltd.

Cephalaxin synthesizing enzyme (α amino acid ester hydrolase) was partially purified from the culture broth of *Acetobacter turbidans* ATCC9325 through ammonium sulfate fractionation, DEAE, CM, and Sephacryl S-200 gel filtration. The enzyme has optimum pH 6.0 and temperature, 40°C respectively. From the analysis of reaction mixtures by thin layer chromatographic and high performance liquid chromatographic techniques, it was confirmed this enzyme catalyzed simultaneously the following reactions:
1) Synthesis of cephalaxin from D- α-phenylglycine methylester (PGM) and 7-amino 3-deacetoxy- cetoxycephalosphoramic acid (7-ADCA)
2) Hydrolysis of cephalaxin to form 7-ADCA and phenylglycine (PG)
3) Hydrolysis of PGM to form PG and methanol.

Based on the above experimental observations, the reaction model of this enzyme was identical with that of the enzyme from *Xanthomonas citri*.

Fermentation of carboxymethylcellulase using recombinant DNA-Bacillus *megaterium*

Kwang-Hee Son*, Jong-Hyun Jang,
Jung-Hoe Kim

Korea Advanced Institute of Science & Technology

For the analysis of fermentation characteristics and productivity of plasmid coded product, carboxymethylcellulase in a recombinant DNA cell fermentation system, batch and continuous fermentations were carried out using a *Bacillus megaterium* ATCC 14945 transformed with a plasmid, pCK 108 harboring carboxymethyl cellulase gene. The effects of carbon and nitrogen sources and of temperature and pH on cell growth, product yield, plasmid stability, specific plasmid contents of cell,