• Title/Summary/Keyword: poly-L-lactic acid

Search Result 118, Processing Time 0.249 seconds

Preparation and Evaluation of Chrysin Encapsulated in PLGA-PEG Nanoparticles in the T47-D Breast Cancer Cell Line

  • Mohammadinejad, Sina;Akbarzadeh, Abolfazl;Rahmati-Yamchi, Mohammad;Hatam, Saeid;Kachalaki, Saeed;Zohreh, Sanaat;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3753-3758
    • /
    • 2015
  • Background: Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. Materials and Methods: PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. In addition, the resulting particles were characterized by scanning electron microscopy. Results: The chrysin encapsulation efficiency achieved for polymeric nanoparticles was 70% control of release kinetics. The cytotoxicity of different concentration of pure chrysin and chrysin loaded in PLGA-PEG ($5-640{\mu}M$) on T47-D breast cancer cell line was analyzed by MTT-assay. Conclusions: There is potential for use of these nanoparticles for biomedical applications. Future work should include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of breast cancer.

The Effect of Thermal History Induced by Melt Spinning on the Mechanical Properties of Polylactic Acid Fibers (용융 가공에 의해 발현된 열 이력이 폴리락트산 섬유의 기계적 물성에 미치는 영향)

  • 천상욱;김수현;김영하;강호종
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.656-663
    • /
    • 2000
  • The Effects of thermal history during the melt spinning process on the mechanical properties and crystallinity of polylactic acid (PLLA) fibers have been studied. Thermal history applied on PLLA during the melt process caused the decrease of number-average molecular weights and this resulted in the lowering of orientation and crystallinity in PLLA fibers. As a result, the longer applied thermal history, the less tensile strength and modulus, and the higher elongation at break. It was also found that primary factor for controlling crystallinity of PLLA fiber was the stress induced crystallization while the thermal induced crystallization had a little effect on the crystallinity of PLLA fibers. However, the thermal induced crystallization turn out to be important in the crystallinity developed by annealing of PLLA fibers.

  • PDF

Clinical courses and degradation patterns of absorbable plates in facial bone fracture patients

  • Kim, Young Min;Lee, Jong Hun
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • Background: Absorbable plates are widely used in open reduction and internal fixation surgeries for facial bone fractures. Absorbable plates are made of polyglycolic acid (PGA), polylactic acid (PLA), polydioxane (PDS), or various combinations of these polymers. The degradation patterns of absorbable plates made from different polymers and clinical courses of patients treated with such plates have not been fully identified. This study aimed to confirm the clinical courses of facial bone fracture patients using absorbable plates and compare the degradation patterns of the plates. Methods: A retrospective chart review was conducted for 47 cases in 46 patients who underwent open reduction and internal fixation surgery using absorbable plates to repair facial bone fractures. All surgeries used either PLA/PGA composite-based or poly-L-lactic acid (PLLA)/hydroxyapatite (HA) composite-based absorbable plates and screws. Clinical courses were confirmed and comparisons were conducted based on direct observation. Results: There were no naturally occurring foreign body reactions. Post-traumatic inflammatory responses occurred in eight patients (nine cases), in which six recovered naturally with conservative treatment. The absorbable plates were removed from two patients. PLA/PGA compositebased absorbable plates degraded into fragments with non-uniform, sharp surfaces whereas PLLA/HA composite-based absorbable plates degraded into a soft powder. Conclusion: PLA/PGA composite-based and PLLA/HA composite-based absorbable plates showed no naturally occurring foreign body reactions and showed different degradation patterns. The absorbable plate used for facial bone fracture surgery needs to be selected in consideration of its degradation patterns.

Effect of Paclitaxel-loaded Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells

  • Hou, Zhi-Hong;Zhao, Wen-Cui;Zhang, Qi;Zheng, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1725-1728
    • /
    • 2015
  • Objective: To explore effects of paclitaxel-loaded poly lactic-co-glycolic acid (PLGA) particles on the viability of human hepatocellular carcinoma (HCC) HepG2 cells. Materials and Methods: The viability of HepG2 cells was assessed using MTT under different concentrations of prepared paclitaxel-loaded particles and paclitaxel (6.25, 12.5, 25, 50, and 100 mg/L), and apoptosis was analyzed using Hochest33342/Annexin V-FITC/PI combined with an IN Cell Analyzer 2000. Results: Paxlitaxel-loaded nanoparticles were characterized by narrow particle size distribution (158.6 nm average particle size). The survival rate of HepG2 cells exposed to paclitaxel-loaded PLGA particles decreased with the increase of concentration and time period (P<0.01 or P<0.05), the dose- and time-dependence indicating sustained release (P<0.05). Moreover, apoptosis of HepG2 cells was induced, again with an obvious dose- and time-effect relationship (P<0.05). Conclusions: Paclitaxel-loaded PLGA particles can inhibit the proliferation and induce the apoptosis of HCC HepG2 cells. This new-type of paclitaxel carrier body is easily made and has low cost, good nanoparticle characterization and sustained release. Hence, paclitaxel-loaded PLGA particles deserve to be widely popularized in the clinic.

Biodegradable implants for orbital wall fracture reconstruction

  • Jang, Hyeon Uk;Kim, So Young
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Background: Due to the different handling properties of unsintered hydroxyapatite particles/poly-L-lactic acid (uHA/PLLA) and polycaprolactone (PCL), we compared the surgical outcomes and the postoperative implantation accuracy between uHA/PLLA and PCL meshes in orbital fracture repair. Methods: Patients undergoing orbital wall reconstruction with PCL and uHA/PLLA mesh, between 2017 and 2019, were investigated retrospectively. The anatomical accuracy of the implant in bony defect replacement and the functional outcomes such as diplopia, ocular motility, and enophthalmos were evaluated. Results: No restriction of eye movement was reported in any patient (n= 30 for each group), 6 months postoperatively. In the PCL group, no patient showed diplopia or enophthalmos, while the uHA/PLLA group showed two patients with diplopia and one with enophthalmos. Excellent anatomical accuracy of implants was observed in 27 and 22 patients of the PCL and uHA/PLLA groups, respectively. However, this study showed that there were neither any significant differences in the surgical outcomes like diplopia and enophthalmos nor any complications with the two well-known implants. Conclusion: PCL implants and uHA/PLLA implants are safe and have similar levels of complications and surgical outcomes in orbital wall reconstruction.

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.

Preparation of Collagen/Poly(L-lactic acid) Composite Material for Wound Dressing

  • Lee, Jung-Soo;Kim, Jae-Kyung;Park, So-Ra;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • Collagen is the major structural protein of connective tissues. It can be used as a prosthetic biomaterial applicable to artificial skin, tendon, ligaments, and collagen implants. The objective of this study is to investigate the possibility of realizing wound dressing medical products by the synthesis of composite materials with collagen and a biodegradable polymer, PLLA, via a surface modification process. Type I collagen was obtained from pig skin by a separation process. The structural characteristics of the extracted collagen were confirmed by SDS-polyacrylamide (PAcr) gel electrophoresis (PAGE) and FTIR. Also, PLLA-g-PAcr was synthesized by the radical polymerization of acrylamide initiated by AIBN in the presence of PLLA. The surface of PLLA was modified by the presence of the acrylamide residues. The structural characteristics of the copolymer were analyzed by FTIR, $^1H-NMR$ and contact angle measurements. The water uptake and WVTR of the collagen/PLLA-g-PAcr composite tended to increase with increasing collagen concentration and with decreasing EDC concentration.

Long-term Follow-up of Extensive Peri-anchor (Poly-L/D-lactic Acid) Cyst Formation after Arthroscopic Rotator Cuff Repair: A Case Report

  • Kim, Jong-Ho;Kim, Jong-Ick;Lee, Hyo-Jin;Kim, Dong-Jin;Sung, Gwang Young;Kwak, Dong-Ho;Kim, Yang-Soo
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.2
    • /
    • pp.100-105
    • /
    • 2019
  • Suture anchors are commonly used in shoulder surgeries, especially for rotator cuff tears. Peri-anchor cyst formation, however, is sometimes detected on follow-up radiologic image after surgery. The purpose of this report is to discuss the case of a patient who presented with regression of extensive peri-anchor cyst on postoperative 4-year follow-up magnetic resonance imaging and had good clinical outcome despite peri-anchor cyst formation after arthroscopic rotator cuff repair.

Synthesis of Thermosensitive and Biodegradable Methoxy Poly(ethylene glycol)-Polycaprolactone and Methoxy Poly(ethylene glycol)-Poly(lactic acid) Block Copolymers (온도감응 및 생분해성 폴리에틸렌 글리콜-폴리카프로락톤과 폴리에틸렌 글리콜-폴리락타이드 공중합체의 합성)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • The sol to gel transition of aqueous solution of block copolymers consisting of methoxy poly (ethylene glycol) (MPEG) and biodegradable polyesters such as $\varepsilon$-caprolactone and L-lactide was investigated as a function of temperature. MPEG-PCL was prepared by ring opening polymerization of $\varepsilon$-caprolactone in the presence of HClㆍEt$_2$O as monomer activator at room temperature. Also, MPEG-PLLA was prepared by ring opening polymerization of L-lactide in the presence of stannous octoate at 115$^{\circ}C$. The properties of block copolymers were investigated by $^1$H-NMR, IR, and GPC as well as the observation of thermo sensitive phase transition in aqueous solution. As the hydrophobic block length increased, the sol to gel transition temperature increased and curve of that steepen to lower concentration. To confirm the gel formation at body temperature, we observed the formation of gel in the mice body after injection of 20 wt% aqueous solution of each block copolymer. After surging, we investigated the gelation in mice. The results obtained in this study confirmed the feasibility as biomaterials of injectable implantation for controlled release of drug and protein delivery.

Antiproliferative Effects of Free and Encapsulated Hypericum Perforatum L. Extract and Its Potential Interaction with Doxorubicin for Esophageal Squamous Cell Carcinoma

  • Amjadi, Issa;Mohajeri, Mohammad;Borisov, Andrei;Hosseini, Motahare-Sadat
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2019
  • Objectives: Esophageal squamous cell carcinoma (ESCC) is considered as a deadly medical condition that affects a growing number of people worldwide. Targeted therapy of ESCC has been suggested recently and required extensive research. With cyclin D1 as a therapeutic target, the present study aimed at evaluating the anticancer effects of doxorubicin (Dox) or Hypericum perforatum L. (HP) extract encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles on the ESCC cell line KYSE30. Methods: Nanoparticles were prepared using double emulsion method. Cytotoxicity assay was carried out to measure the anti-proliferation activity of Dox-loaded (Dox NPs) and HP-loaded nanoparticles (HP NPs) against both cancer and normal cell lines. The mRNA gene expression of cyclin D1 was evaluated to validate the cytotoxicity studies at molecular level. Results: Free drugs and nanoparticles significantly inhibited KYSE30 cells by 55-73% and slightly affected normal cells up to 29%. The IC50 of Dox NPs and HP NPs was ~ 0.04-0.06 mg/mL and ~ 0.6-0.7 mg/mL, respectively. Significant decrease occurred in cyclin D1 expression by Dox NPs and HP NPs (P < 0.05). Exposure of KYSE-30 cells to combined treatments including both Dox and HP extract significantly increased the level of cyclin D1 expression as compared to those with individual treatments (P < 0.05). Conclusion: Dox NPs and HP NPs can successfully and specifically target ESCC cells through downregulation of cyclin D1. The simultaneous use of Dox and HP extract should be avoided for the treatment of ESCC.