• Title/Summary/Keyword: poly-ADP-ribose polymerase (PARP)

Search Result 268, Processing Time 0.034 seconds

Induction of apoptosis by methanol extracts of Ficus carica L. in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Ficus carica L. (fig) is one of the first cultivated crops and is as old as humans. This plant has been extensively used as a traditional medicine for treating diseases, such as cough, indigestion, nutritional anemia, and tuberculosis. However, the physiological activity of fig leaves on oral cancer is as yet unknown. In this study, we investigated the anticancer effect of methanol extracts of Ficus carica (MeFC) and the mechanism of cell death in human FaDu hypopharyngeal squamous carcinoma cells. MeFC decreased the viability of oral cancer (FaDu) cells but did not affect the viability of normal (L929) cells, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and Live and Dead assay. In addition, MeFC induced apoptosis through the proteolytic cleavage of procaspase-3, -9, poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by 4′,6-diamidino-2-phenylindole dihydrochloride staining and western blot analysis. Moreover, a concentration of MeFC without cytotoxicity (0.25 mg/mL) significantly suppressed colony formation, a hallmark of cancer development, and completely inhibited the colony formation at 1 mg/mL. Collectively, these results suggest that MeFC exhibits a potent anticancer effect by suppressing the growth of oral cancer cells and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, the methanol extract of Ficus carcica leaves provide a natural chemotherapeutic drug for human oral cancer.

Anti-cancer Activity of Anthricin through Caspase-dependent Apoptosis in Human Hypopharyngeal Squamous Carcinoma Cell

  • Kim, Won Gi;Lee, Seul Ah;Moon, Sung Min;Kim, Jin-Soo;Kim, Su-Gwan;Shin, Yong Kook;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.183-190
    • /
    • 2016
  • Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner ($IC_{50}$ 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.

Curcumin Induces Apoptosis and Inhibits Growth of Human Burkitt's Lymphoma in Xenograft Mouse Model

  • Li, Zai-xin;Ouyang, Ke-qing;Jiang, Xv;Wang, Dong;Hu, Yinghe
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.283-289
    • /
    • 2009
  • Curcumin, a natural compound extracted from rhizomes of curcuma Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor and anti-oxidative properties. However, the mechanism of action of the compound remains poorly understood. In this report, we have analyzed the effects of curcumin on the cell proliferation of Burkitt's lymphoma Raji cells. The results demonstrated that curcumin could effectively inhibit the growth of Raji cells in a dose- and time-dependent manner. Further studies indicated that curcumin treatment resulted in apoptosis of cells. Biochemical analysis showed that the expression of Bax, Bid and cytochrome C were up-regulated, while the expression of oncogene c-Myc was down regulated after curcumin treatment. Furthermore, poly (ADP-ribose) polymerase (PARP) cleavage was induced by the compound. Interestingly, the antiapoptotic Bcl-2 expression was not significantly changed in Raji cells after curcumin treatment. These results suggested that the mechanism of action of curcumin was to induce mitochondrial damage and therefore led to Raji cell apoptosis. We further investigated the in vivo effects of curcumin on the growth of xenograft tumors in nude mice. The results showed that curcumin could effectively inhibit tumor growth in the xenograft mouse model. The overall results showed that curcumin could suppress the growth of Burkitt's lymphoma cells in both in vitro and in vivo systems.

Study of Paljinhangahm-dan on Anti-tumoral Effect and Mechanism (팔진항암단의 항종양효과 및 기전연구)

  • Bae Nam Kyu;Moon Seok Jae;Won Jin Hee;Kim Dong Woung;Moon Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1143-1150
    • /
    • 2002
  • Recent evidence suggests that many Oriental Medicinal prescriptions are effective in cancer patients as a supportive care. Oriental Medicinal herbs have been investigated extensively and are known to have multiple pharmacological effect. These herbs contain a variety of ingredients which may act synergistically to inhibit tumor cell division, to increase tumor cell death (apoptosis), and to increase the proportion of immune cells within tumor. Paljinhangahm-dan (Paljin) has been used to treat for cancer patients in Oriental Medicine for decades. The effects of aqueous extract of Paljin on the induction of apoptotic cell death were investigated in human leukemia cell lines (HL-60, Jurkat, Molt-4 and U937). The viability of leukemia cells was markedly decreased by Paljin in a dose-dependent manner. Paljin induced the apoptotic death of leukemia cells, which was characterized by the ladder-pattern DNA fragmentation, and chromatin condensation of the nuclei. Paljin digested Bid protein but did not affect Bcl-2 protein level and also, induced mitochondrial dysfunction disrupted as shown as the mitochondrial membrane potential. It activated caspase-9 and caspase-3. thereby resulted in cleavage of poly(ADP) ribose polymerase(PARP). These results indicate that Paljin induces apoptosis of human leukemia cells via activation of intrinsic caspase cascades with mitochondrial dysfunction.

Apoptotic effect of Me fraction of Scutellaria barbata in human leukemic U937 cells (반지련의 Methyl chloride 분획이 U937 단핵 세포 암주의 세포고사에 미치는 영향)

  • Cha Yun Yi;Lee Eun Ok;Lee Ju Ryoung;Kang In Cheol;Park Young Doo;Ahn Kyoo Seok;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.629-632
    • /
    • 2003
  • Scutellaria barbata has been used as a traditional Chinese Herb for treating liver, lung and rectal tumors. In the present study, cytotoxic effect of Scutellaria barbata MC fradtion was investigated and it was found to inhibit proliferation of human leukemic U937 cells with an IC50 of approximately 10 μg/ml in a dose-dependent manner. We also demonstrated that Scutellaria barbata MC fraction caused apoptosis in U937 cells. In the flow cytometric assay, the MC fraction-treated U937 cells showed an increase in hypo-diplold Sub G1 DNA contents. DNA fragmentation was observed by TUNEL assay. An increase of Bax:Bcl-2 ratio, activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) were demonstrated by western blot analysis. Taken together, these results exerted that the MC fraction suppressed human leukemic U937 cell proliferation by inducing apoptosis via the mitochondrial pathway.

Ginsenoside Rg3 from Red Ginseng Prevents Damage of Neuronal Cells through the Phosphorylation of the Cell Survival Protein Akt

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Hwang, Kwang-Woo;Lee, Seon-Gu;Yoo, Yeong-Min;Lee, Do-Ik
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.244-247
    • /
    • 2006
  • Neuronal cell death significantly contributes to neuronal loss in neurological injury and disease. Typically, neuronal loss or destruction upon exposure to neurotoxins, oxidative stress, or DNA damage causes neurodegenerative diseases such as Alzheimer's disease. In this study, we attempted to determine whether ginsenoside Rg3 from red ginseng has a neuroprotective effect via an anti-apoptotic role induced by S-nitroso-N-acetylpenicillamine (SNAP) at the molecular level. We also investigated the antioxidant effect of Rg3 using a metal-catalyzed reaction with $Cu^{2+}/H_2O_2$. Our results showed that Rg3 ($40-100\;{\mu}g/mL$) protected SK-N-MC neuroblastoma cells under cytotoxic conditions and effectively protected DNA from fragmentation. In the signal pathway, caspase-3, and poly (ADP-ribose) polymerase (PARP) were kept at an inactivated status when pretreated with Rg3 in all ranges. In particular, the important upstream p-Akt signal pathway was increased in a dose-dependent manner, which indicates that Rg3 may contribute to cell survival. We also found that oxidative stress can be mitigated by Rg3. Therefore, we have concluded that Rg3 plays a certain role in neurodegenerative pathogenesis via an anti apoptotic, antioxidative effect.

Platycodin D Induces Apoptosis, and Inhibits Adhesion, Migration and Invasion in HepG2 Hepatocellular Carcinoma Cells

  • Li, Ting;Xu, Wen-Shan;Wu, Guo-Sheng;Chen, Xiu-Ping;Wang, Yi-Tao;Lu, Jin-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1745-1749
    • /
    • 2014
  • Background: Platycodin D (PD), a triterpenoid saponin isolated from the Chinese medicinal herb Platycodonis radix, possesses anti-cancer effects in several cancer cell lines. The aim of this study was to evaluate its anticancer activities in hepatocellular carcinoma cells. Materials and Methods: MTT and colony formation assays were performed to evaluate cell proliferation, along with flow cytometry and Western blotting for apoptosis. Cell adhesion was tested by observing cellular morphology under a microscope, while the transwell assay was employed to investigate the cell migration and invasion. Results: PD concentration-dependently inhibited cell proliferation in both HepG2 and Hep3B cells, and significantly suppressed colony formation and induced apoptosis in HepG2 cells. The protein levels of cleaved poly ADP-ribose polymerase (PARP) and Bax were up-regulated while that of survivin was down-regulated after treatment with PD. Moreover, PD not only obviously suppressed the adhesion of HepG2 cells to Matrigel, but also remarkably depressed their migration and invasion induced by 12-O-tetradecanoylphorbol 13-acetate (TPA). Conclusions: PD presents anti-cancer potential in hepatocellular carcinoma cells via inducing apoptosis, and inhibiting cell adhesion, migration and invasion, indicating promising features as a lead compound for anti-cancer agent development.

Steroids from the Cold Water Starfish Ctenodiscus crispatus with Cytotoxic and Apoptotic Effects on Human Hepatocellular Carcinoma and Glioblastoma Cells

  • Quang, Tran Hong;Lee, Dong-Sung;Han, Se Jong;Kim, Il Chan;Yim, Joung Han;Kim, Youn-Chul;Oh, Hyuncheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2335-2341
    • /
    • 2014
  • Chemical investigation on the methanol extract of the starfish Ctenodiscus crispatus resulted in the isolation of five steroids, (22E,$24{\zeta}$)-26,27-bisnor-24-methyl-$5{\alpha}$-cholest-22-en-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,25-pentol 25-O-sulfate (1), (22E,24R,25R)-24-methyl-$5{\alpha}$-cholest-22-en-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,25,26-hexol 26-O-sulfate (2), (28R)-24-ethyl-$5{\alpha}$-cholesta-$3{\beta}$,5,$6{\beta}$,8,$15{\alpha}$,28,29-heptaol-24-sulfate (3), (25S)-$5{\alpha}$-cholestane-$3{\beta}$,5,$6{\beta}$,$15{\alpha}$,$16{\beta}$,26-hexaol (4), and ${\Delta}7$-sitosterol (5). Their structures were identified by extensive spectroscopic analyses, including 1D, 2D NMR and MS and chemical methods. Compound 4 showed cytotoxicity against human hepatoma HepG2 and glioblastoma U87MG cells via inhibition of cell growth and induction of apoptosis. Induction of apoptosis by 4 was demonstrated by cell death, DNA fragmentation, increased Bax/Bcl-2 protein ratio and the activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP).

Methanol Extracts of Codium fragile Induces Apoptosis through G1/S Cell Cycle Arrest in FaDu Human Hypopharynx Squamous Carcinoma Cells

  • Lee, Seul Ah;Park, Bo-Ram;Moon, Sung Min;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.61-68
    • /
    • 2018
  • Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase -3, -7, -9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor). Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.

Induction of Apoptosis by Gamisamgibopae-tang in A549 Human Lung Cancer Cells through Modulation of Bcl-2 Family and Activation of Caspases (Bcl-2 family 발현 변화 및 caspases의 활성을 통한 가미삼기보폐탕의 A549 인체폐암세포 apoptosis 유도)

  • Kim, Hyun-Joong;Kim, Hong-Gi;Kim, Jin-Young;Kam, Cheol-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.630-641
    • /
    • 2008
  • Gamisamgibopae-tang (GMSGBPT) is a traditional Korean medicine, which has been used for patients suffering from a lung disease in Oriental medicine. In the present study, we examined the biochemical mechanisms of apoptosis by GMSGBPT in NCI-H460 and A549 human non-small-cell lung cancer cell lines. It was found that GMSGBPT could inhibit the cell proliferation of A549 cells in a concentration-dependent manner, however GMSGBPT did not affect the cell proliferation of NCI-H460 cells. Apoptotic cell death in A549 cells were detected using DAPI staining and annexin V fluorescein methods. The induction of apoptotic cell death by GMSGBPT was connected with a down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression, and proteolytic activation of caspase-3 and caspase-9 in A549 cells. However, GMSGBPT did not affect the levels of pro-apoptotic Bax and Bad expression, and activity of caspase-8. GMSGBPT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, phospholipase C-1 (PLC${\gamma}$1) and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings suggest that GMSGBPT may be a potential chemotherapeutic agent for the control of human non-small-cell lung cancer cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of GMSGBPT.