• 제목/요약/키워드: poly-(3-hydroxybutyrate)

검색결과 128건 처리시간 0.02초

A Simple Method for Recovery of Microbial $Poly-{\beta}-hydroxybutyrate$ by Alkaline Solution Treatment

  • Lee, In-Young;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.238-240
    • /
    • 1995
  • A novel and simple purification method for microbial $poly-{\beta}-hydroxybutyrate$ (PHS) was developed. Sodium hydroxide was found to be efficient for digesting cell materials. Initial biomass concentration, NaOH concentation, digestion time, and incubation temperature were optimized. When 40 g/l of biomass was incubated in 0.1 N NaOH at $30^{\circ}C$ for 1 h, PHB purity of 88.4% with a weight average molecular weight ($M_w$) of 770,000 and a polydispersity index (PI) of 2.4 was recovered with a yield of 90.8% from the biomass which initially contained PHB of a $M_w$ of 780,000 and a PI of 2.3.

  • PDF

Chain orientation and Degradation Behavior of Poly[(R)-3-hydroxybutyrate] Lamellar Crystals

  • 이원기;조남주;하창식
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.872-876
    • /
    • 2001
  • Topological changes caused by the alkaline and enzymatic attacks of solution-grown, chain-folded lamellar crystals (SGCs) of poly[(R)-3-hydroxybutyrate] P(3HB) have been studied in order to investigate the chain-folding structure in P(3HB) crystal regions. NaOH and an extracellular PHB depolymerase purified from Alcaligenes faecalis T1 were used for alkaline and enzymatic hydrolysis, respectively. The measurements were performed on crystals attached to a substrate which is inactive to degradation mediums. Both alkaline and enzymatic attacks lead to a breakup of the lamellar crystals along the crystallographic b-axis during initial erosion. Since hydrolysis preferentially occurs in amorphous regions, this morphological result reflects relatively loosely packed chains in core parts of lamellar crystals. Additionally, it was supported by the ridge formation along the b-axis in the lamellar crystals after thermal treatment at a low temperature because of the thermally sensitive nature of the loosely packed chains in lamellar crystals. However, the alkaline hydrolysis accompanied the chain erosions or scissions in quasi-regular folded lamellar surfaces due to smaller size of alkaline ions in comparison to the enzyme, resulting in the decrease of molecular weight.

Enzymatic and Non-enzymatic Degradation of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi Gang Guk;Kim Hyung Woo;Rhee Young Ha
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.346-352
    • /
    • 2004
  • Poly(3-Hydroxybutyrate-co­3-Hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to $60\;mol\%$) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical pro­perties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extra­cellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degra­dation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydro­philicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copoly­esters.

Biosynthesis of polyhydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacillus thuringiensis R-510

  • Park, Sang-Kyu;Lee, Kang-Tae;Kim, Young-Baek;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제35권2호
    • /
    • pp.127-133
    • /
    • 1997
  • Biosynthesis of polyhydroxybutyrate and copolymer consisting of 3-hydroxybutyrate and 3-hydroxyvalerate [poly(3HB-co-3HV)] by Bacillus thuringiensis R-510 grown with glucose or with mixtures of glucose and propionate was investigated. n-Alkanoic acids other than propionate were not precursors of 3HV units. The fraction of 3HV unit in the copolymer increased from 0 to 84 mol% of 3HV. Polymer yield decreased as the fraction of propionate was increased but the molecular weight distribution was not affected by the composition of carbon substrate. The minimum melting temperature (around 65.deg.C) of poly (3HB-co-3HV) copolymers was observed for the polymer bearing approximately 35 mol% of 3HV. Polyhydroxyalkanoates production by this organism was not dependent on nutritional limitation, but remarkably influenced by dissolved oxygen concentration in the culture medium. Low level of dissolved oxygen concentration prevented spore formation in the cells and stimulated the synthesis of polyhydroxyalkanoate. The composition of poly (3HB-co-3HV) produced by B. thuringiensis R-510 lyhydroxyalkanoate. The composition of poly(3HB-co-3HV) propduced by B. thuringiensis R-510 varied according to the growth time. However, there was no evidence that polymers isolated from cells were mixtures of immiscible polymers.

  • PDF

플라즈마를 이용한 미생물합성 폴리에스테르의 표면개질과 효소분해성 (Surface Modification and Enzymatic Degradation of Microbial Polyesters by Plasma Treatments)

  • 김준;이원기;류진호;하창식
    • 접착 및 계면
    • /
    • 제7권2호
    • /
    • pp.19-25
    • /
    • 2006
  • 미생물 합성 고분자인 poly(hydroxylalkanoate)s (PHAs)의 초기효소분해는 표면침식의 메커니즘으로 진행하므로 이들의 분해거동은 표면특성을 개질로서 조절할 수 있다. 본 연구에서는 효소분해속도를 조절하기 위하여 플라즈마 기법을 PHAs 표면특성의 개질에 적용하였다. $CF_3H$$O_2$ 플라즈마를 사용하여 재료 표면에 각각 소수성 및 친수성을 부여하였다. 효소분해 실험은 pH 7.4의 0.1 M potassium phosphate 완충용액에서 Alcaligenes facalis T1에서 정제된 poly(hydroxybutyrate) 분해효소를 첨가하여 행하였다. $CF_3H$ 플라즈마 처리된 시편의 경우 표면 층의 불소화에 따른 소수성의 증가와 분해 효소에 대한 비활성으로 초기분해 속도가 상당히 지연됨을 관찰하였으나 $O_2$ 플라즈마 처리에 의한 표면 친수성은 분해속도의 촉진 등에 큰 영향을 미치지 않았다.

  • PDF

Purification and Characterization of Extracellular Poly(3-hydroxybutyrate) Depolymerase from Penicillium simplicissimum LAR13

  • Han, Jee-Sun;Kim, Mal-Nam
    • Journal of Microbiology
    • /
    • 제40권1호
    • /
    • pp.20-25
    • /
    • 2002
  • An extracellular PHB depolymerase was purified from P. simplicissimum LAR13 cultural medium by Sepharose CL-6B chromatography. When the fungus was grown in a basal salt medium with poly(3-hydroxybutyrate) (PHB) as the sole carbon source, PHB depolymerase production reached maximum at its stationary phase. The mycelial growth rate was higher at 37$^{\circ}C$ than at 30$^{\circ}C$ and even higher than at 25$^{\circ}C$, However, the enzyme production was lower at 37$^{\circ}C$ than 30$^{\circ}C$ or 25$^{\circ}C$. The isolated enzyme is composed of a single polypeptide chain with a molecular mass of about 36 kDa as determined by SDS-PAGE. The optimum conditions for the enzyme activity are pH 5.0 and 45$^{\circ}C$. The enzyme was stable for 30 min at a temperature lower than 50$^{\circ}C$, and stable at pH higher than 2.0 but it was unstable at pH 1.0.1 mM Fe$\^$2+/ reduced the enzyme activity by 56% and the enzyme was inhibited almost completely by 4 mM Fe$\^$2+/ . The enzyme was partially inhibited by phenylmethylsulfonyl fluoride and was very sensitive to diazo-DL-norleucine methyl esters dithiothreitol and mercuric ion. However, N-p - tosyl - L - Iysinechloromethyl ketone, p -hydroxymercuricbenzoate and N- acetylimidazole had no influence upon its activity.

Metabolic Analysis of Poly(3-Hydroxybutyrate) Production by Recombinant Escherichia coli

  • WONG, HENG HO;RICHARD J. VAN WEGEN;JONG-IL CHOI;SANG YUP LEE
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.593-603
    • /
    • 1999
  • Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYLl07 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.

  • PDF

Culture Conditions Affecting the Molecular Weight Distribution of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Synthesized by Alcaligenaes sp. SH-69

  • Yoon, Joo Seok;Park, Sang Kyu;Kim Young Baek;Maeng, Hack Young;Rhee, Young Ha
    • Journal of Microbiology
    • /
    • 제34권3호
    • /
    • pp.279-283
    • /
    • 1996
  • The weight average molecular weight of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesized by Alcaligenes sp. SH-69 was altered between $3.2$\times$10^5$ and $1.1$\times$10^6$ depending upon various culture conditions. It appeared that culture conditions favorable for the efficient production of copolyesters promoted the formation of higher molecular weight copolyesters. Polydispersity indices of isolated copolyesters were in the range of 1.5 to 2.5.

  • PDF

분홍색 통성 메탄올 자화세균이 생산하는 Poly-$\beta$-Hydroxybutyrate (Poly-$\beta$-Hydroxybutyrate Produced by Pink-Pigmented Facultative Methylotrophic Bacterium from Methanol)

  • 송미연;이재호;이용현
    • 한국미생물·생명공학회지
    • /
    • 제18권3호
    • /
    • pp.273-279
    • /
    • 1990
  • PHB 생산을 위하여 메탄올을 기질로 한 선별배지에서 토양, 하천수, 퇴비 등으로부터 분홍색 색소를 가지는 PHB 축적 facultative methylotroph를 분리하여, 균주의 특성을 검토하였다. 분리균주의 최적 생육조건과 PHB 축적을 위한 배양조건을 조사한 결과 균체의 생육은 메탄올 농도 1.0(v/v), 질소원인$ NH_4C$ 농도 1.0g/l, 즉 C/N ratio 13.2 일때 그리고 pH 7.0과'$30^{\circ}C$에서 가장 좋았으며, PHB는 C/N ratio가 50.8, 즉 메탄올 농도 1.0(v/v )$NH_4CL$ 0.26g/l 일때, 그리고 pH 6.0일 때 건조중량의 약 40까지 축적되었다. 고농도 메탄올에 의한 생육저해를 극복하기 위하여 기질을 간헐적으로 계속 공급해주는 fed-batch 배양을 시도한 결과 균체량은 14g/l, PHB 축척량은 5.5g/l까지 증가시킬 수 있었다. 생산된 PHB를 분리.정제하여 IR과 $^I H-NMR$로 구조를 분석한 결과 3-hydroxybutyric acid 의 homopolymer임이 확인되었다. 또한 균주의 pink-pigment를 추출하여 absorption spectrum를 조사하여 그 특성을 규명하였다.

  • PDF

메탄올자화균 Methylobacterium extorquens AM1의 phaR 유전자 결실을 통한 poly 3-hydroxybutyrate (PHB) 생합성 억제 (Inhibition of poly 3-hydroxybutyrate (PHB) synthesis by phaR deletion in Methylobacterium extorquens AM1)

  • 김유진;이광현;김현수;조숙형;이진원
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.363-368
    • /
    • 2017
  • 메탄올자화균이란 일탄소 화합물인 메탄올을 주탄소원 및 에너지원으로 이용할 수 있는 미생물을 말한다. Methylobacterium extorquens AM1은 serine cycle을 탄소대사경로로 이용하는 메탄올자화균 중에서도 가장 많이 연구가 진행된 균주이다. M. extorquens AM1의 poly 3-hydroxybutyrate (PHB) cycle은 EMCP (ethylmalonyl-CoA pathway), glyoxylate regeneration cycle, TCA cycle과 연결되어 있으며 EMCP 유래 유기산 또는 TCA 유기산을 생산하기 위해서는 PHB cycle로 흐르는 carbon flux의 차단이 필요하다. 이를 위해서 PHB 합성과 acetyl-CoA flux의 조절유전자로 알려져 있는 PhaR 유전자를 markerless gene deletion 방법을 이용해서 M. extorquens AM1에서 knockout했다. 결과적으로, knockout 균주인 ${\Delta}phaR$에서 야생종 대비 확연히 PHB granule이 줄어든 것이 확인되었다. Lag phase가 약 12 h 늦어졌지만, ${\Delta}phaR$은 야생종과 비슷한 세포성장과 메탄올소비 경향을 보임을 확인하였다.