• Title/Summary/Keyword: poly urethane

Search Result 88, Processing Time 0.049 seconds

Radial Flow Type Bioreactor for Bioartificial Liver Assist System using PTFE Non-Woven Fabric Coated with Poly-amino Acid Urethane Copolymer

  • Miskon, Azizi;Yamaoka, Tetsuji;Uyama, Hiroshi;Kodama, Makoto
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.259-259
    • /
    • 2006
  • PAU is the block copolymer consists of a small amount of a small amount of poly(${\gamma}-methyl-L-glutamate$) (PMLG) and the polyurethane. The urethane segments are hydrophobic and then strongly interact with the other hydrophobic materials such as PTFE, and the PMLG segments with the ${\alpha}-helix$ structure possess the cytocompatibility. Therefore, PAU can be easily coated onto the PTFE fiber and acts as an artificial extracellular matrix with the high cytocompatibility Results shows, the immobilization, cultured and functions of porcine hepatocytes is greatly improved.

  • PDF

Zeta-potential in CMP process of sapphire wafer on poly-urethane pad (폴리우레탄 패드를 이용한 기계-화학 연마공정에서 파이어 웨이퍼 표면 전위)

  • Hwang, Sung-Won;Shin, Gwi-Su;Kim, Keun-Joo;Suh, Nam-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1816-1821
    • /
    • 2003
  • The sapphire wafer for blue light emitting device was manufactured by the implementation of the chemical and mechanical polishing process. The surface polishing of crystalline sapphire wafer was characterized by zeta potential measurement. The reduction process with the alkali slurry provides the surface chemical reaction with sapphire atoms. The poly-urethane pad also provides the frictional force to take out the chemically-reacted surface layers. The surface roughness was measured by the atomic force microscope and the crystalline quality was characterized by the double crystal X -ray diffraction analysis.

  • PDF

A Study on the Tensile Performance according to Quantities Characteristics of Charcoal in Poly-Urethane Waterproofing Material (폴리우레탄 방수재의 숯 첨가량에 따른 인장성능 변화추이 연구)

  • Park, Jin-Sang;Kim, Dong-Bum;Park, Wan-Goo;Ha, Mi-Young;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.120-121
    • /
    • 2017
  • Polyurethane coating materials are widely used in waterproofing construction because they ensure easy workability and high performance mechanical properties, and such polyurethane coating materials are in various mixture ratios. This study carried out a test to determine the basic physical property changes of polyurethane coating material based on the amount of charcoal additives to. The results showed that he tensile strength was found to be 3.1 N / ㎟ when the charcoal amount was at 2%, displaying the highest performance rate.

  • PDF

Property Comparison of Bio-Polyurethane and Petroleum based Polyurethane (바이오 폴리우레탄과 석유기반 폴리우레탄의 물성 비교)

  • Lee, Dam Hee;Lee, Kwan Hee;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.47-52
    • /
    • 2018
  • The three polyols, poly(trimethylene ether) glycol 2000, poly(tetramethylene ether) glycol 2000 and poly (tetramethylene ether) glycol 1000 were reacted with 4,4-diphenylmethane diisocyanate to get polyurethanes. The synthesized three polyurethanes were measured by FT-IR, NMR for investigating chemical structures. Through two spectroscophical methods, It is found that urethane group exists in the three polymers. From the evaluation of hardness, glass transition temperature, tensile strength, and water resistance, the results showed increasing order of Poly(tetramethylene ether) glycol 1000 > Poly(trimethylene ether) glycol 2000 > Poly(tetramethylene ether) glycol 2000 with the content of hard segment in polyurethane.

Effect of polyol on urethane to increase the cavitation resistance (우레탄수지에서 캐비테이션 저항을 높이기 위한 Polyol의 영향)

  • Lee, Iksoo;Kim, Nackjoo;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.628-634
    • /
    • 2014
  • In this study, a new paint which is able to resist the cavitation erosion is tried to be developed by using urethane added with polyol such as poly propylene glycol(PPG), poly carbonate diol(PCD), polycaprolactone polyol (PCL-1), and poly caprolactone-tetramethylene gylcolether polyol(PCL-2). The new paint synthesized by adding polyol was characterized with physical properties and resistivity to cavitation erosion. Among polyol, the prepolymer added with PCD showed high hardness and wear resistance. However, due to too high in viscosity, the prepolymer added with PCL-1 was selected as a paint. The paint added with PCL-1 showed high resistivity to cavitation erosion and its surface was monitored by using Scanning Electron Microscope.

The Effects of the Height and the Quality of the Material of Popular Heel-up Insole on the Mean Plantar Foot Pressure during Walking (보행시 보급형 키 높이 인솔의 높이와 재질이 평균 족저압에 미치는 영향)

  • Lee, Joong-Sook;Kim, Doo-Hwan;Jung, Bu-Won;Han, Dong-Wook;Park, Don-Mog
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • This study determined the effects of the height and the quality of the material of popular heel-up insole on mean plantar foot pressure during walking. Seven healthy college students who are studying at S university in Busan were as participants in this study. After sufficiently explaining about the research to the subjects before the experiment, mean plantar foot pressures were examined using F-Scan Pressure Measure System 5.23 for the gait with shoes inserted insole and the data were compared among the height and the quality of material of insoles. In the result, there was a difference significantly in the mean plantar foot pressure followed the height of insoles both left and right. Especially, mean plantar foot pressure in left indicated significantly lower in 3 cm and 5 cm insoles than in 0 cm and 1 cm insoles. Also mean plantar foot pressure in right showed significantly lower in 3 cm and 5 cm insoles than in 0 cm, and indicated significantly lower in 5 cm insoles than in 1 cm and 3 cm insoles. The mean plantar foot pressure followed the quality of the material of insoles were different significantly. In left, the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than urethane poly-acetyl inserted air insole, power-gel insole and jelly insole. And the mean plantar foot pressure of urethane poly-acetyl insole was lower significantly than power-gel insole and jelly insole in right. We showed that 3 cm and 5 cm insoles in the height of insoles and Urethane poly-acetyl insole in the quality of material were suitable to reduce a fatigue which is felt in plantar foot during the walking.

Synthesis and Analysis of Multi-functional Urethane Acrylate Monomer, and its Application as Curing Agent for Poly(phenylene ether)-based Substrate Material (다관능 우레탄 아크릴레이트 단량체의 합성과 분석, 및 폴리페닐렌에테르 기판소재용 경화성분으로의 적용)

  • Kim, Dong-Kook;Park, Seong-Dae;Oh, Jin-Woo;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.413-419
    • /
    • 2012
  • Multi-functional urethane acrylate monomers as the curing agent of poly(phenylene ether) (PPE) were synthesized and then the urethane bond formation was checked by FTIR spectrometry and NMR analysis. The synthesized monomers were mixed with PPE and fabricated to dielectric substrates. After forming PPE/monomer composite sheets by a film coater, several sheets were laminated to a test substrate in a vacuum laminator and then its properties depending on the type and the amount of monomers, such as dielectric constant, dielectric loss, and peel strength, were measured. Between the two different hydroxyl acrylates, when the monomer synthesized with 2-hydroxy-3-phenoxypropyl acrylate containing a phenyl group was used as a curing agent, a smaller dielectric loss was obtained and the dielectric constant and loss decreased with a decrease in the amount of the monomer. The peel strength values of the test substrates, however, did not show any specific difference between the cases of two synthesized monomers. As a result, it was obtained the polymer substrate for high frequency application having peel strength of about 10 N, low dielectric constant of 2.54, and low dielectric loss of 0.0027 at 1 GHz.

Electrical Properties of High Impact Polystyrene (HIPS)/Thermoplastic Urethane (TPU) Blend with Poly(styrene-co-maleic anhydride) as a Compatibilizer (상용화제 Poly(styrene-co-maleic anhydride) 첨가에 따른 고충격 폴리스티렌 (HIPS)/Thermoplastic Urethane (TPU) 블렌드의 전기적 특성)

  • Lee, Young-Hee;Lee, Tae-Hee;Kim, Won-Jung;Kim, Tae-Young;Yoon, Ho-Gyu;Suh, Kwang-S.
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.251-255
    • /
    • 2008
  • This study suggested antistatic material which can increase anti-static properties and mechanical strength by mixing polystyrene for conveying electronic stuffs with metal salt and ester compound as a anti-static agent. We studied about mechanical, thermal and electrical characteristics by changing the contents of MAH of poly(styrene-co-maleic anhydride), compatibilizer. As the result of measuring residue space charge of the blends of HIPS(75)/TPU(25)/poly(styrene-co-maleic anhydride)(MAH weight ratio : 25, 32, 43.5 wt%), we could find small residue charge in the blend which MAH(25 wt%) was added and it showed the highest values in tensile strength. Additionally we found out the material to which compatibilizer was added kept better anti-static properties than one to which compatibilizer was not added. In the event we could confirm that the adding of PS-co-MAH enables two polymers were mixed well when HIPS/TPU was blended and anti-static agent made easier dissipative in the blend.