• Title/Summary/Keyword: poly(methyl methacrylate)/montmorillonite(MMT)nanocomposite

Search Result 2, Processing Time 0.019 seconds

Preparation of Poly(methyl methacrylate)/Na-MMT Nanocomposites via in-Situ Polymerization with Macroazoinitiator

  • Jeong Han Mo;Ahn Young Tae
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.102-106
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na-MMT) nanocomposites were prepared with a novel method utilizing a macroazoinitiator (MAI). To induce the intergallery polymerization of methyl methacrylate (MMA), the MAI containing a po1y(ethylene glycol) (PEG) segment was intercalated between the lamellae of Na-MMT and swelled with water to enhance the diffusion of MMA into the gallery. The structure of the nanocomposite was examined using X-ray diffraction and transmission electron microscopy, and the thermal properties were examined using differential scanning calorimetry and thermogravimetry. The PMMA/Na-MMT nanocomposite prepared by intergallery polymerization showed a distinct enhancement of its thermal properties; an approximately $30^{\circ}C$ increase in its glass transition temperature and an $80\sim100^{\circ}C$ increase in its thermal decomposition temperature for a $10\%$ weight loss.

Preparation and Characterization of Acrylic Bone Cement with Poly(methyl methacrylate)/Montmorillonte Nanocomposite Beads (폴리(메틸 메타크릴레이트)/몬모릴로나이트 나노복합체를 이용한 아크릴계 골시멘트의 제조 및 특성)

  • Lim Jin Sook;Son Eun Hee;Hwang Sung-Joo;Kim Sung Soo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.350-356
    • /
    • 2005
  • Poly(methyl methauylate)/montmorillonite nanocomposites were incorporated into acrylic bone cement in order to improve the mechanical properties and reduce the exotherm of acrylic bone cement. The nanocomposites were prepared using a suspension polymerization and characterized by scanning electron microscopy, X-ray diffraction, trans-mission electron microscopy, gel permeation chromatography, particle size analyzer and electron dispersive spectroscopy. The acrylic bone cements with poly (methyl methacrylate)/nanocomposite s were prepared and their thermal and mechanical properties were characterized. The prepared polymeric beads were composed of polymer-intercalated nanocomposites with partially exfoliated MMT layers, and the mean diameter of them was $50\~60$ fm with the spherical shape. The maximum setting temperature of the acrylic bone cements decreased from 98 to $81\~87^{circ}C$. The mechanical strengths and moduli of the acrylic bone cement with 0.1 $wt\%$ MMT were increased. compared to that without MMT. However, the mechanical properties were generally decreased with increasing incorporated MMT amounts. It is presumably due to the bubbles in nanocomposite beads generated during polymerization.