폴리(메틸 메타크릴레이트)/몬모릴로나이트 나노복합체를 이용한 아크릴계 골시멘트의 제조 및 특성

Preparation and Characterization of Acrylic Bone Cement with Poly(methyl methacrylate)/Montmorillonte Nanocomposite Beads

  • 임진숙 (충남대학교 약학대학 제약학과) ;
  • 손은희 (충남대학교 약학대학 제약학과) ;
  • 황성주 (충남대학교 약학대학 제약학과) ;
  • 김승수 (한국화학연구원 나노생체재료팀)
  • Lim Jin Sook (Laboratory of Industrial Pharmacy, College of Pharmacy, Chung-Nam National University) ;
  • Son Eun Hee (Laboratory of Industrial Pharmacy, College of Pharmacy, Chung-Nam National University) ;
  • Hwang Sung-Joo (Laboratory of Industrial Pharmacy, College of Pharmacy, Chung-Nam National University) ;
  • Kim Sung Soo (Laboratory of Industrial Pharmacy, College of Pharmacy, Chung-Nam National University)
  • 발행 : 2005.07.01

초록

아크릴계 골시멘트의 기계적 물성을 향상시키고 중합열을 낮추기 위하여 폴리(메틸 메타크릴레이트)/몬모릴로나이트 나노복합체를 골시멘트에 도입하는 연구를 행하였다. 나노복합체는 현탁중합으로 합성하였고 이의 특성을 주사전자 현미경, X-선 회절분석기, 투과전자현미경, 젤 투과 크로마토그래피, 입도분석기, 에너지 분산 분광기로 확인하였다. 폴리(메틸 메타크릴레이트)/몬모릴로나이트 나노복합체를 도입한 골시멘트를 제조하고, 이의 발열특성, 인장 및 압축특성을 조사하였다. 합성된 입자는 몬모릴로나이트 층들이 부분적으로 박리되고 고분자가 삽입된 나노복합체였고, 직경이 약 $50\~60$um인 구형이었다. 골시멘트의 경화온도는 $98^{circ}C$에서 $81\~87^{circ}C$로 감소하였으며, 골시멘트의 기계적 특성을 측정해 본 결과 0.1$wt\%$몬모릴로나이트를 함유하고 있는 골시멘트의 기계적 강도는 증가하였으나, 그 이상에서는 대체로 감소하는 경향을 보였다. 이는 현탁중합 과정에 생성된 나노복합체 내의 기포에 기인하는 것으로 사료된다.

Poly(methyl methauylate)/montmorillonite nanocomposites were incorporated into acrylic bone cement in order to improve the mechanical properties and reduce the exotherm of acrylic bone cement. The nanocomposites were prepared using a suspension polymerization and characterized by scanning electron microscopy, X-ray diffraction, trans-mission electron microscopy, gel permeation chromatography, particle size analyzer and electron dispersive spectroscopy. The acrylic bone cements with poly (methyl methacrylate)/nanocomposite s were prepared and their thermal and mechanical properties were characterized. The prepared polymeric beads were composed of polymer-intercalated nanocomposites with partially exfoliated MMT layers, and the mean diameter of them was $50\~60$ fm with the spherical shape. The maximum setting temperature of the acrylic bone cements decreased from 98 to $81\~87^{circ}C$. The mechanical strengths and moduli of the acrylic bone cement with 0.1 $wt\%$ MMT were increased. compared to that without MMT. However, the mechanical properties were generally decreased with increasing incorporated MMT amounts. It is presumably due to the bubbles in nanocomposite beads generated during polymerization.

키워드

참고문헌

  1. J. A. Planell, M. M. Vila, F. J. Gil and F. C. M. Driessens, Encyclopedic Handbook of Materials and Bioengineering, D.L. Wise, Editor, Marcel Deckker, New York, Vol. 2, p. 879 (1995)
  2. D. K. Han and K. D. Ann, Biomaterials Research (Korea), 7,148 (2003)
  3. B. Pourdeyhimi and H. D. Wagner, J. Biomed. Mater. Res., 23,63 (1989) https://doi.org/10.1002/jbm.820230106
  4. D. N. Hild and H. Malchau, Clin. Orthop. Rel. Res., 344,44 (1993)
  5. M. S. Silverstein, O. Breuer, and H. Dodiuk, J. Appl. Polym. Sci., 52, 1785 (1994) https://doi.org/10.1002/app.1994.070521213
  6. D. H. Yang, G. H. Yoon, S. H. Kim, J. M. Rhee, and G. Khang, Polymer (Korea), 28,77 (2004)
  7. S. Shinzato, T. Nakamura, T. Kokubo, and Y. Kitamura, J. Biomed. Mater. Res., 54, 491 (2001) https://doi.org/10.1002/1097-4636(200101)54:1<1::AID-JBM1>3.0.CO;2-M
  8. C. I. Vallo, J. Biomed. Mater. Res. (Appl. Biomater.), 53,717 (2000) https://doi.org/10.1002/1097-4636(2000)53:6<717::AID-JBM15>3.0.CO;2-H
  9. J. M. Yang, C. S. Lu, Y. G. Hsu, and C. H. Shin, J. Biomed. Mater. Res. (Appl. Biomater.), 38, 143(1997) https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<143::AID-JBM9>3.0.CO;2-Q
  10. M. Kobayashi, T. Nakamura, J. Tamura, H. Iida, H. Fujita, T. Kobubo, and T. Kikutani, J. Biomed. Mater. Res., 37,68 (1997) https://doi.org/10.1002/(SICI)1097-4636(199710)37:1<68::AID-JBM9>3.0.CO;2-H
  11. L. D. T. Topoleski, P. Ducheyne, and J. M. Cuckler, J. Biomed. Mater. Res., 26,1599(1992) https://doi.org/10.1002/jbm.820261206
  12. L. D. T. Topoleski, P. Ducheyne, and J. M Cuckler, J. Biomed. Mater. Res., 29, 299 (1995) https://doi.org/10.1002/jbm.820290304
  13. A. Takahashi and T. Koshino, Biomaterials, 16, 937 (1995) https://doi.org/10.1016/0142-9612(95)93119-X
  14. C. I. Vallo, P. E. Montemaruni, M. A. Fanovich, J. M. Lopez, and T. R. Cuadrado, J. Biomed. Mater. Res., 48,150 (1999) https://doi.org/10.1002/(SICI)1097-4636(1999)48:2<150::AID-JBM9>3.0.CO;2-D
  15. Q. Hu, B. Li, M. Wang, and J. Shen, Biomaterials, 25, 779 (2004) https://doi.org/10.1016/S0142-9612(03)00582-9
  16. W. R. Walsh, M. J. Svehla, J. Russell, M. Saito, T. Nakashima, R. M. Gillies, W. Bruce, and R. Hori, Biomaterials, 25, 4929 (2004) https://doi.org/10.1016/j.biomaterials.2003.12.020
  17. K. Serbetci, F. Korkusuz, and N. Hasirci, Polymer Testing, 23,145 (2004) https://doi.org/10.1016/S0142-9418(03)00073-4
  18. M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, and H. Tateyama, Polymer, 41,3887 (2000) https://doi.org/10.1016/S0032-3861(99)00655-2
  19. N. Salahuddin and M. Shehata, Polymer, 42, 8379 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  20. Y. H. Lee, S.-K. Hong, K. S. Yoon, I. Choi, S. G. Lee, J. H. Lee, and K. Y. Choi. Polymer(Korea), 25,818 (2001)
  21. J. H.Park and S.C.Jana, Polymer, 44, 2091 (2003) https://doi.org/10.1016/S0032-3861(03)00075-2
  22. S. J. Park, B. R. Jun, J. R Lee, and D. H. Sun, J. Korean Ind. Eng. Chem., 14,440(2003)
  23. J. J Luo and I. M. Daniel, Composites Science and Technology, 63, 1607 (2003) https://doi.org/10.1016/S0266-3538(03)00060-5
  24. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, and K. Kaji, J. Polym. Sci; Part A: Polym. Chem., 31, 983 (1993) https://doi.org/10.1002/pola.1993.080310418
  25. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, and K. Kaji, J. Polym. Sci; PartB: Polym, Phys., 32,625 (1994) https://doi.org/10.1002/polb.1994.090320404
  26. S. S. Kim, T. S. Park, B. C. Shin, and Y. B. Kim, J. Appl. Polym. Sci., in press, 2005
  27. X. Huang and W. J. Brittain, Polymer Preprints, 41,521 (2000)