• Title/Summary/Keyword: poly(ethylene naphthalate)

Search Result 54, Processing Time 0.021 seconds

Micro- and Macroscopic Structures of Oriented Poly(trimethylene 2,6-naphthalate)(PTN) films (배향된 Poly(trimethylene 2,6-naphthalate)(PTN) 필름의 미시적/거시적 구조)

  • 양영일;김영호;이한섭
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.341-342
    • /
    • 2003
  • Poly(trimethylene 2,6-naphthalate)(PTN)은 dimethyl-2,6-naphthalene dicarboxylate(NDC)와 1,3-propanediol(PDO)로 합성된 polyester이다. 비록 PTN은 아직 상업화된 resin은 아니지만 Poly(trimethylene terephthalate)(PTT)와 비슷한 화학적 구조를 가지며 PTT 보다 높은 유리전이 온도(72$^{\circ}C$)를 나타내고 있으므로 다양한 분야에 응용될 수 있다. 특히 최근에 1,3-propanediol based polyester는 가스 차탄 특성이 우수하다는 것이 보고되었으며 PTN의 산소, 이산화탄소 등 가스 차단 특성은 poly(ethylene 2,6-naphthalete)(PEN)보다 우수한 것으로 보고되었다. (중략)

  • PDF

Spherulitic Morphologies of Poly(ethylene terephthalate), Poly(ethylene 2,6-naphthalate), and Their Blend

  • Lee, Jong-Kwan;Lee, Kwang-Hee;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.44-48
    • /
    • 2002
  • The supermolecular structures of poly(ethylene terephthalate) (PET), poly(ethylene 2,6-naphthalate) (PEN), and their blend were investigated with optical microscopy and small angle light scattering. With increasing the crystallization temperature, incomplete spherulitic texture was developed for the PET samples. At a high crystallization temperature of 220 $^{\circ}C$, the light scattering pattern represented a random collection of uncorrelated lamellae. The general morphological appearances for the PEN samples were similar to that of the PET. A notable feature was that the spherulites of the PEN formed at 200 $^{\circ}C$ showed regular concentric bands arising from a regular twist in the radiating lamellae. The spherulitic morphology of the PET/PEN blend was largely influenced by the changes of the sequence distribution in polymer chains determined by the level of transesterifcation. The increased sequential irregularity in the polymer chains via transesterification caused a morphological transition from a regular folded crystallite to a tilted lamellar crystallite.

Pseudo Liquid Crystallinity and Characteristics of PHB/PEN/PET Melt Blend (PHB/PEN/PET 삼상계 용융혼합물의 의사액정상 및 특성연구)

  • 박재기;정봉재;김성훈
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.113-123
    • /
    • 2000
  • Poly(p-hydroxybenzoate) (PHB)/poly(ethylene terephthalate) (PET) 8/2 thermotropic liquid crystalline copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to obtain the pseudo liquid crystalline (LC) phase of ternary blends. The torque values of blends with increasing PHB content were abruptly decreased above 40 wt% of PHB content, because the melt viscosity of ternary blends decreased. Tensile strength and initial modulus of blends containing above 30 wt% PHB were improved with increasing PHB content. Tensile strength and modulus of fiber were increased with PHB contents and take-up speed. Degree of transesterification and randomness of blends were increased with blending time. The blend of 40 wt% PHB was shown pseudo LC phase in the polarized optical photographs. Crystallinity of PHB/PEN/PET ternary blend were increased with PHB content.

  • PDF

Sequence Distribution and Thermal Property of PEN/PBN Copolymers

  • Park, Sang-Soon;Hwang, Jeong-Jun;Jun, Ho-Wook;Im, Seung-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.38-43
    • /
    • 1997
  • Poly(ethylene 2, 6-naphthalate-co-tetramethylene 2, 6-naphthalate) (PEN/PBN) copolymers were synthesized and studied by 13C NMR spectroscopy, DSC analysis and X-ray diffraction. A minimum in the melting point vs. composition curve was found at approximately 60 mol% tetramethylene 2, 6-naphthalate. The PEN/PBN copolymers were shown to be statistically random throughout the range of 1, 4-butanediol compositions. The melting point depression behavior of annealed PEN/PBN copolymers depended upon the sequence propagation probability, PS, which is suggested by indivisual crystal formation of two pure comonomers; that is, ethylene-naphthalate-ethylene, EE, and tetramethylene-naphthalate-tetramethylene, BB. However, it can be seen from the X-ray curve that the peaks of PEN/PBN copolymers appear from a crystal lattice which is governed only by the rich component between two different aliphatic units in the copolymer composition.

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

Miscibility in Binary Blends of Poly(vinyl phenol) and Poly(n-alkylene 2,6-naphthalates)

  • Lee, Joon-Youl;Han, Ji-Young
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.94-99
    • /
    • 2004
  • We have performed Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies on blends of poly(vinyl phenol) (PVPh) with poly(n-alkylene 2,6-naphthalates) containing alkylene units of different lengths. The results indicate that each poly(ethylene 2,6-naphthalate) (PEN) and poly(trimethylene 2,6-naphthalate) (PTN) blend with PVPh is immiscible or partially miscible, but blends of poly(butylene 2,6-naphthalate) (PBN) with PVPh are miscible over the whole range of compositions in the amorphous state. FTIR spectroscopic analysis confirmed that significant degree of intermolecular hydrogen bonding occurs between the PBN ester carbonyl groups and the PVPh hydroxyl groups. The large difference in the degree of mixing in these blend systems is described in terms of the effect that chain mobility has on the accessibility of the ester carbonyl functional groups toward the hydroxyl groups of PVPh, which in turn impacts the miscibility of these blends.

Changes in the Miscibility of PTT/PBN Blends with Melting Time (용융시간에 따른 PTT/PBN 블렌드물의 혼화성 변화)

  • 최재원;김영호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.83-86
    • /
    • 2003
  • 최근 들어 poly(trimethylene terephthalate)(PTT)를 다른 고분자와 블렌딩시켜 특성 변화를 검토한 논문이 많이 발표되고 있는데 PTT와 블렌딩하는 고분자는 주로 PET와 같은 Poly(alkylene terephthalate)계 고분자들이다[1,2]. 나프탈렌환을 갖는 Poly(alkylene naphthalate)계 고분자를 PTT와 블렌딩한 연구는 PTT/poly(ethylene naphthalate)(PEN) 블렌드계[3] 정도가 보고되고 있으며, PTT를 다른 나프탈렌계 고분자와 블렌딩한 연구 결과는 거의 없는 실정이다. (중략)

  • PDF

Crystallization and Melting Behavior of Silica Nanoparticles and Poly(ethylene 2,6-naphthalate) Hybrid Nanocomposites

  • Kim Jun-Young;Kim Seong-Hun;Kang Seong-Wook;Chang Jin-Hae;Ahn Seon-Hoon
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.146-154
    • /
    • 2006
  • Organic and inorganic hybrid nanocomposites based on poly(ethylene 2,6-naphthalate) (PEN) and silica nanoparticles were prepared by a melt blending process. In particular, polymer nanocomposites consisting mostly of cheap conventional polyesters with very small quantities of inorganic nanoparticles are of great interest from an industrial perspective. The crystallization behavior of PEN/silica hybrid nanocomposites depended significantly on silica content and crystallization temperature. The activation energy of crystallization for PEN/silica hybrid nanocomposites was decreased by incorporating a small quantity of silica nanoparticles. Double melting behavior was observed in PEN/silica hybrid nanocomposites, and the equilibrium melting temperature decreased with increasing silica content. The fold surface free energy of PEN/silica hybrid nanocomposites decreased with increasing silica content. The work of chain folding (q) for PEN was estimated as $7.28{\times}10^{-20}J$ per molecular chain fold, while the q values for the PEN/silica 0.9 hybrid nanocomposite was $3.71{\times}10^{-20}J$, implying that the incorporation of silica nanoparticles lowers the work required to fold the polymer chains.

Mechanical Properties of Silica Nanoparticle Reinforced poly(ethylene 2, 6-naphthalate)

  • Kim, Seong-Hun;Ahn, Seon-Hoon;Kim, Byoung-Chul;Shim, Kwang-Bo;Cho, Bong-Gyoo
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.293-302
    • /
    • 2004
  • We added surface-modified silica nanoparticles to poly(ethylene 2,6-naphthalate) (PEN) to investigate their effect on the mechanical properties on the PEN nanocomposite material. The torque and total torque values of the composites decreased in the silica nanoparticle composites. The tensile modulus of the composites reinforced with unmodified silica nanoparticles increased upon increasing the silica content, while the tensile strength and elongation decreased accordingly. In contrast, stearic acid-modified, silica nanoparticle reinforced PEN composites exhibited an increase in elongation and a decrease in tensile modulus upon addition of the silica nanoparticles because the stearic acid that had adsorbed onto the surface of the silica nanoparticle in multilayers could act as a plasticizer during melt compounding. Stearic acid modification had a small effect on the crystallization behavior of the composites. We calculated theoretical values of the tensile modulus using the Einstein, Kerner, and Nielsen equations and compared these values with the experimental data obtained from the composites. The parameters calculated using the Nielsen equation and the Nicolais- Narkis model revealed that the interfacial adhesion between silica nanoparticles and the PEN matrix could be improved.