• Title/Summary/Keyword: poly(carbazole)

Search Result 34, Processing Time 0.027 seconds

Investigation of Supporting Electrolyte Effect on Supercapacitor Properties of Poly(Carbazole) Films

  • Duran, Berrin;Unver, Irem Cakmakci;Bereket, Gozen
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 2020
  • In this study poly(carbazole) films deposited on stainless steel have been investigated as electrode material for supercapacitor applications. Poly(carbazole) films were electrodeposited using cyclic voltammetry in presence of lithium, sodium and tetrabutylammonium perchlorate salts. Poly(carbazole) films doped with perchlorate anions having different counter cations were characterized by SEM, ATR-FTIR and solid state conductivity measurements. Capacitive behaviours of PCz coated steel electrodes were tested by cyclic voltammetry, charge-discharge analysis and electrochemical impedance spectroscopy. It was found that counter cation of the dopant is significantly effective on the capacitive performance on the obtained PCz films and the PCz film synthesized from lithium perchlorate has the better capacitive performance than the poly(carbazole)s synthesized from sodium perchlorate and tetrabutylammonium perchlorate salts.

Microstructure and Electrical Properties of Poly-N-isopropylacrylamide- N-vinylcarbazole Copolymers

  • Pierson, R.;Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2057-2060
    • /
    • 2009
  • Conducting poly-N-isopropylacrylamide-N-vinyl carbazole (PNI-nvc) copolymers were synthesized via in situ deposition technique by dissolving different weight percentages of N-vinyl carbazole (10, 20, 30, and 40%). The structural morphology and FT-IR studies support the interaction between PNI and N-vinyl carbazole. The temperaturedependent DC conductivity of PNI-nvc was studied within the range of 300 ${\leq}\;T\;{\leq}$ 500 K, presenting evidence for the transport properties of PNI-nvc. The DC conductivity of PNI-nvc copolymers signifies the future development of new nanocopolymers that acts as a multifunctional material.

Synthesis and Characterization of Poly[9,10-diphenylanthracene-4$^\prime$, 4$^\prime^\prime$-ylenevinylene-3,6-(N-2-ethylhexyl)carbazole]

  • Kim, Yun Mi;Park, Gi Min;Gwon, Sun Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.975-978
    • /
    • 2001
  • A novel poly[9,10-diphenylanthracene-4',4"-ylenevinylene-3,6-(N-2-ethyl hexyl)carbazole] containing alternate diphenylanthracene and carbazole unit was synthesized by the Wittig reaction. The obtained polymer was soluble in common organic solvents and thermally stable up to 380 $^{\circ}C.$ The polymer gives rise to bright blue fluorescence both in solution and in thin solid films. The light emitted from the device (ITO/polymer/Al) was greenish-blue in color and clearly visible in daylight.

Systematic Approaches for Blue Light-emitting Polymers by Introducing Various Naphthalene Linkages into Carbazole Containing PPV Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.258-262
    • /
    • 2013
  • Poly(2,3-naphthalenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), 2,3-PNCPV, poly(2,6-naphthalene vinylenealt- N-ethylhexyl-3,6-carbazolevinylene), 2,6-PNCPV, and poly(1,4-naphthalenevinylene-alt-N-ethylhexyl-3,6- carbazolevinylene), 1,4-PNCPV were synthesized through the Wittig polycondensation reaction. The conjugation lengths of the polymers were controlled by differently linked naphthalenes in the polymer main chain. The resulting polymers were completely soluble in common organic solvents, and exhibited good thermal stability at up to $400^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 357-374 nm and 487-538 nm, respectively. The carbazole and 2,3-linked naphthalene containing 2,3-PNCPV showed a blue PL peak at 487 nm. A single-layer light-emitting diode was fabricated with an ITO/polymer/Al configuration. The electroluminescence (EL) emission of 2,3-PNCPV was shown at 483 nm.

Synthesis and Characterization of New Poly(2,7-Carbazole) Derivative for Organic Solar Cells (유기 태양 전지 응용을 위한 새로운 카바졸계 고분자 합성 및 특성에 관한 연구)

  • Lee, Sang Kyu;Kim, Hee Joo;Park, Song Joo;Chae, Eun Ah;Cho, Jung Min;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • Polymer solar cells (PSCs) have attracted considerable academic and commercial interest because of their unique advantages, such as the facile manufacture of low cost, flexibility, lightweight, and solution processibility. Recently, high-performance polymer solar cells made from a mixture of poly(2,7-carbazole) derivatives, PCDTBT, and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) have been reported, with maximum power conversion efficiency of 6.1%. In this work, we report new novel copolymers based on poly(2,7-carbazole) derivatives with a suite of electron-deficient moieties or electron-rich units. We systematically investigated the synthesis, thermal stability, as well as the optical and electrochemical properties of these polymers. Detailed synthetic scheme, optical, electrochemical, and photovoltaic properties of the copolymers will be presented.

  • PDF

Synthesis and Properties of PCPP-Based Conjugated Polymers Containing Pendant Carbazole Units for LEDs

  • Jin, Young-Eup;Kim, Sun-Hee;Lee, Hyo-Jin;Song, Su-Hee;Kim, Yun-Na;Woo, Han-Young;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2419-2425
    • /
    • 2007
  • New poly(cyclopenta[def]phenanthrene) (PCPP)-based conjugated copolymers, containing carbazole units as pendants, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs) to show that most of them have higher maximum brightness and EL efficiency. The prepared polymers, Poly(2,6-(4-(6-(Ncarbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP10) and Poly(2,6-(4-(6-(N-carbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene))-co-(2,6-(4,4-dioctyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP7 and CzPCPP5), were soluble in common organic solvents and used as the EL layer in light-emitting diodes (LEDs) of configuration with ITO/PEDOT/polymer/Ca/Al device. The polymers are thermally stable with glass transition temperature (Tg) at 77-100 °C and decomposition temperature (Td) at 423-457 °C. The studies of cyclic voltammetry indicated same HOME levels in all polymers, although the ratios of carbazole units are different. In case of PLEDs with configuration of ITO/PEDOT/CzPCPPs/Ca/Al device, The EL maximum peaks were around 450 nm, which the turn-on voltages were about 6.0-6.5 V. The maximum luminescence of PLEDs using CzPCPP10 was over 4400 cd/m2 at 6.5 V, which all of the maximum EL efficiency were 0.12 cd/A. The CIE coordinates of the EL spectrum of PLEDs using CzPCPP10 was (0.18, 0.08), which are quite close to that of the standard blue (0.14, 0.08) of NTSC.

Synthesis and Luminescent Properties of Blue Light Emitting Polymers Containing a 4,4' or 3,3'-Linked Biphenyl Unit

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.317-321
    • /
    • 2012
  • Poly[4,4'(3,3')-biphenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene], 4,4'(3,3')-PBPMEH-PPV, and poly[4,4'(3,3')-biphenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene], 4,4'(3,3')-PBPCAR-PPV, of varying effective conjugation lengths, were synthesized by the well-known Wittig condensation polymerization between the appropriate biphenyl diphosphonium salts and dialdehyde monomers such as carbazole or dialkoxyphenyl dialdehyde. The conjugation lengths of the polymers were controlled by biphenyl linkages (4,4' or 3,3'). The resulting polymers were highly soluble in common organic solvents and exhibited good thermal stability up to $300^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 314-400 nm and 430-507 nm, respectively. Carbazole and 3,3'-biphenyl containing 3,3'-PBPCAR-PPV showed a blue PL peak at 430 nm. A single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescence (EL) emission of 3,3'-PBPCAR-PPV was shown at 455 nm.

Optical Properties of Poly(N-arylcarbazole-alt-aniline) Copolymers For Polymer Light Emitting Devices

  • Wang, Hui;Ryu, Jeong-Tak;Kim, Yeon-Bo;Kwon, Young-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.55-60
    • /
    • 2006
  • Thermally stable and solution-processable poly(N-arylcarbazole-alt-aniline) copolymers with high structural integrity were synthesized in good yields via palladium-catalyzed polycondensation of aniline with corresponding N-arylcarbazole monomers such as N-(2-ethylhexyloxyphenyl)-3,6-dibromocarbazole,bis[6-bromo-N-(2-ethylhexyloxyphenyl)carbazole-3-yl] and N-(4-(2-ethylhexyl)-3,5-dibromomethylene-phenyl) carbazole, respectively. The optical and electrochemical properties of these copolymers were measured and compared with those of poly(N-alkylcarbazole-alt-aniline) copolymer. All synthesized poly(N-arylcarbazole-alt-aniline) copolymers showed maximum UV-Vis absorption peaks at around 300 nm in THF solution, and exhibited maximum photoluminescence peaks in the blue emission range from 430 to 460 nm. It was also found that poly(N-arylcarbazole-alt-aniline) copolymers had wider band gap energy than poly(N-alkylcarbazole-alt-aniline) copolymer.

  • PDF

Enhancement of Short-Circuit Current Density in Solar Cells via Reducing Recombination

  • Kim, Gwan-U;Lee, Gang-Yeong;Mun, Byeong-Jun;Lee, Won-Ho;U, Han-Yeong;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.1-484.1
    • /
    • 2014
  • Bulk hetero junction (BHJ) polymer solar cells (PSCs) are one of the most promising fields as alternative energy source. Especially, the development of new p-type conjugated polymer is one of the main issues to get core technology. In this study, a series of varied ratio of 3,6-carbazole in poly[9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl-alt-(5,6-bis-(octyloxy)-4,7-di(thiophen-2-yl)benzo-[1,2,5]-thia-diazole)-5,5-diyl] were designed and synthesized. These polymers have good solubility and film formability than PCDTBT which is well known promising material. Investigation of the photovoltaic properties of these new polymers indicated that polymer with 2% of 3,6-carbazole provided higher PCE (3.8% to 4.9%) with enhanced JSC, FF, VOC. We found origin of this improvement using several methods, one of which is reduced bimolecular recombination in polymer.

  • PDF

Silsesquioxane/Polystyrene Hybrid Materials via Charge Transfer Interactions (전하 이동을 이용한 실세스퀴옥산/폴리스티렌 하이브리드)

  • Choi, Ji-Won;Chujo, Yoshiki
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.136-140
    • /
    • 2007
  • Charge transfer interaction as a hybridization mechanism of silsesquioxane/polymer was tested using carbazole (electron donor) group and dinitrobenzene (electron acceptor) group. Hybridization test was conducted using films made from mixing/casting of poly (carbazole-styrene) (PS/D) and dimtrobenzyl silsesquioxane (Cube/A), and transparent hybrid films were successfully obtained under some conditions. $^1H-NMR$ of PS/D and Cube/A, and W absorption test of hybrid films showed that one acceptor and one donor can form one charge transfer complex when no silsesquioxane molecule was included in films, but transparent hybrids with no phase separation were obtained only at acceptor/donor ratios less than 0.7 : 1. These results also suggested that on average 4 charge transfer complexes form per one silsesquioxane.